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ABSTRACT

Previous experimental work conducted using laboratory soil columns

has shown that diffusion into regions of immobile water can have a large

effect on solute transport through porous media. This study focuses on

the development, analysis, and application of an analytical model which

incorporates the diffusion mechanism into the traditional three-

dimensional advective/dispersive solute transport equation.

By consecutively applying the Laplace transform in time and the

Fourier transform in space, analytical solutions are derived for the

coupled partial differential equations which describe three dimensional

advective/dispersive transport through regions of mobile water and

Fickian diffusion through immobile water regions of simple geometry

(spherical, cylindrical, and layered).

To assist in the analysis of the models, a mode'ied form of Aris'

method of moments is presented, which permits the calculation of the

spatial and temporal moments of the three-dimensional diffusion models,

without having to invert the Laplace or Fourier transformed solutions.

Using this method, the moments of the diffusion models are compared with

one another, with the moments of a model that assumes equilibrium advec-

tive/dispersive transport, and with the moments of a model that assumes

a first-order rate law governs mass transfer between the mobile and

immobile regions. The method of moments is also used to analyze the

differences in the% atial and temporal moment behavior of each trans-

port model under discuision.

Finally, the results of a field experiment conducted to study

sorbing solute transport are presented and interpreted using these

models. It is shown that the first-order rate and diffusion models

offer one plausible explanation of experimental observations which are

unexplainable using the traditional advective/dispersive model approach.

v
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NOTATION

v(v + 2)De  -
a Diffusion rate constant: a +2 2

where v - 1 for layered diffusion
v - 2 for cylindrical diffusion
v - 3 for spherical diffusion

b Characteristic length of the immobile region geometry, L

Der, Bei, Kelvin functionsBer l, Bei l

C Solute concentration, M - 3

Ca Sol~te concentration at a point within the immobile region,

CM Solute concentration in the mobile region, ML- 3

Cim Volume averaged solute concentration in the immobile region,
ML-

De Diffsion coefficient within the immobile region: D - Do/X,

L T e

De  N~diied immobile region diffusion coefficient: De - D/Ria,

DefxD effx, Ef fective dispersion e~ef f cients in the r-, 7-, and z-direc-

effyDeffz tions, respectively, L T-

Do  Liquid diffusion coefficient, L2T 1

Deff Effective dispersion coefficient for use in the advection/
dispersion equation, L

2T 1

D ,D;,D; Dispersion coefficient in the x-, y-, and z-directions, re-
spectively, L T-"
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CHAPTER 1

INTRODUCTION

BACKGROUND

In recent years, the problem of groundwater contamination has re-

ceived widespread public attention. Hazardous chemical waste is being

generated at the rate of 60 million tons annually (U.S. EPA, 1980).

Whether intentionally disposed of or accidentally spilled, some of this

waste can eventually reach the groundwater and contaminate it. Ground-

water may transport the contaminants from the initial disposal site to

an area where a threat to public health may be posed. Therefore, it is

important to understand the processes affecting the transport of these

contaminants in the subsurface environment. In a study of the problem,

the Panel on Groundwater Contamination of the National Research Council

remarked,

Reliable and quantitative prediction of contaminant
movement can be made only if we understand the pro-
cesses controlling transport, hydrodynamic disper-
sion, and chemical, physical and biological reactions
that affect soluble concentrations in the ground.

(NRC, 1984).

Traditionally, the mathematical models used to describe solute

transport in groundwater flow systems have been premised on the advec-

tion/dispersion equation. Advection refers to the average notion of

solute due to the groundwater flow. Dispersion describes spreading of

solute about the mean displacement position. Dispersion is usually

attributed to molecular diffusion, so-called mechanical dispersion, and

spatial variability. Mechanical dispersion is caused by local velocity

variations along tortuous flow paths and the velocity distribution

within each pore (Bear, 1979). Spatial variability produces velocity

variations on a macroscopic scale. In the advection/dispersion model,

the mechanical dispersion mechanism and spatial variability effects are

often assumed to be diffusive (that is, the dispersive flux due to

mechanical dispersion and spatial variability can be expressed by a

Fickian type law). Usually, the effect of molecular diffusion is as-

sumed negligible In comparison vith the effect of mechanical dispersion

(Gillham et al., 1984).
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If the solute sorbs onto the aquifer material, it is often assumed

that sorption is instantaneous, linear, and reversible. These assump-

tions permit modeling of sorbing solute transport using the advection/

dispersion equation as well (Bear, 1979).

The advection/dispersion equation is usually implemented under the

assumption that the dispersion coefficient is a constant property of the

porous medium and the mean velocity. However, results of laboratory and

field investigations have shown that the dispersion coefficient depends

on the scale of the test or the size of the domain through which the

solute travels, thereby invalidating the assumption underlying the

advection/dispersion model in its simple form (Gillham et al., 1984).

Stochastic models have been used to account for this scale effect. Sto-

chastic models assume that the statistical structure of a conductivity

field in a heterogeneous medium can be estimated. The models also

assume that the heterogeneous medium is a single realization of an

underlying stochastic process, and that the parameters of this process

may be approximated using the statistics of the conductivity field.

Also from these statistics, the dispersive capability of a single aqui-

fer may be determined by ensemble averaging over the conceivable aquifer

realizations (Gillham et al., 1984). These stochastic models have been

used to show that ensemblP solute spreading is generally not Fickian

(Gelhar et al., 1979; Matheron and de Marsily, 1980; Smith and Schwartz,

1980; Gelhar and Axness, 1983). A disadvantage of the stochastic

approach is that, since a real aquifer is conceived as a single realiza-

tion, the solute plume must migrate a sufficient distance so that the

ensemble averaging used in the stochastic model is interpretable

(Gillham et al., 1984).

Many stochastic models that have been developed neglect the mecha-

nisms of local mechanical dispersion and diffusion, so that spreading is

strictly a consequence of heterogeneous advection (Warren and Skiba,

1964; Mercado, 1967; Schwartz, 1977; Smith and Schwartz, 1980). A

heterogeneous advection model, when applied to a single aquifer realiza-

tion, predicts local irregularities in the concentration distribution

which will persist at a macroscopic scale (Sudicky, 1983). Sudicky

(1983) noted that in a field experiment where detailed measurements of

local concentration were obtained, this phenomenon was not observed, and

in fact, local irregularities observed at early times were smoothed out
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at later times. Sudicky (1983) proposed that the smoothness of the

observed macroscopic concentration patterns was the result of transverse

molecular diffusion, whereby solute which advects rapidly in the high

permeability zones diffuses into the less permeable zones. Sudicky

(1983) and Gaven et al. (1984) discussed the impact of diffusion on

solute transport in a layered system, and compared the so-called advec-

tion/diffusion model with stochastic models. It was shown that the

deterministic advection/dif fusion model provided results which were

equivalent to results obtained from the stochastic theory developed by

Gelhar et al. (1979). Sudicky's (1983) and Gilven et al.'s (1984) stu-

dies were limited to the analysis of conservative solute transport in a

stratified medium, where each stratum had a different hydraulic conduc-

tivity, and therefore a different, though steady, groundwater flow

velocity.

The importance of diffusion into spehrical zones of low permeabil-

ity was demonstrated in column experiments conducted by Rao et al.

(1980) and Nkedi-Kizza et al. (1982). Goltz and Roberts (1984), using

numerical simulations, demonstrated how a solute transport model which

neglected the mechanism of diffusion could significantly underpredict

long-time contaminant concentrations.

The effect on solute transport of diffusion into low permeability

zones has been discussed in the chemical engineering literature over at

least the past thirty years (Deisler and Wilhelm, 1953; Vermuelen, 1953;

Rosen, 1954). More recently, these diffusion concepts have been applied

to study contaminant transport by groundwater (van Genuchten and

Wierenga, 1976; Rao et al., 1980; Nkedi-Kizza et al., 1982; Valocchi,

1985a; van Genuchten, 1985; Goltz and Roberts, 1986; Crittenden et al.,

1986; Miller and Weber, 1986). These studies, however, have all pre-

sumed one-dimensional solute transport. Since the groundwater environ-

ment is three-dimensional, there is value in deriving three-dimensional

formulations of transport models which incorporate the diffusion mecha-

nism.

SCOPE OF THIS INVESTIGATION

This work was undertaken in response to the apparent importance of

diffusion in affecting the groundwater transport of contaminants.

3



Previous models which have incorporated the diffusion mechanism have

assumed one-dimensional transport, whereas this study will present a

three-dimensional formulation. The specific objectives of this investi-

gation can be summarized as follows:

1. Develop and test a transport model which incorporates the

mechanisms of advection, dispersion, linear reversible

sorption, and diffusion in a three-dimensional, infinite

medium. This study will be limited to the special case

where advection is due to a single, steady, groundwater

flow velocity.

2. Compare how simulations of such a model differ from simu-

lations of the advection/dispersion model, which tradi-

tionally has been used to describe contaminant transport.

To facilitate this comparison, develop and apply methods

for obtaining spatial and temporal moments of the concen-

tration distributions simulated using the different

models.

3. Compare and contrast simulations of the different diffu-

sion model formulations.

4. Apply the model to the data set obtained in an extensive,

high-resolution field experiment. Assess whether char-

acteristics of the spatial and temporal data are explain-

able using models which incorporate diffusion. In

addition, examine if alternate models which assume other

mechanisms (e.g., nonlinear, hysteretic sorption) can

explain experimental observations. This will require an

analysis of the spatial moment behavior of these alter-

nate models.
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CHAPTER 2

MODEL FORMULATION

This chapter reviews the so-called two-region models, which couple

an expression describing advective/dispersive solute transport in

regions of mobile water with an expression describing mass transfer into

regions of immobile water.

A three-dimensional formulation for such two-region models will be

presented and an analytical solution derived. The solution technique

involves consecutively applying the Laplace transform in time, and the

Fourier transform in space to the coupled set of partial differential

equations that mathematically describe the two-region models.

REVIEW OF EXISTING MODELS

Transport of hydrophobic organic chemicals in groundwater tradi-

tionally has been described using the homogeneous advective/dispersive

transport equation with a sink term to account for sorption of the

organic solute onto the soil matrix. This sorption term is often devel-

oped assuming local equilibrium and a linear, reversible equilibrium

relationship between the quantity of the organic compound in the sorbed

and solution phases. Several investigators have found, in laboratory

column studies, that the nearly symmetric, sigmoid forms of breakthrough

responses predicted using models making these simplifying assumptions,

do not agree with experimental observations (van Genuchten and Wierenga,

1976; Rao et al., 1979; Reynolds et al., 1982; De Smedt and Wierenga,

1984). Frequently, experimental breakthrough responses exhibit highly

asymmetric or nonsigmoid profiles, commonly termed tailing. Tailing may

be attr~butable to the slow diffusion of solute into zones of immobile

water. It has been hypothesized that these zones result from soil

aggregation, slow flow, or unsaturated flow (van Genuchten and Wierenga,

1976; Rao et al., 1980; Nkedi-Kizza et al., 1982; De Smedt and Wierenga,

1984).

Various models have been proposed to describe the exchange of

solute between mobile and immobile zones. The simplest of these, the

first-order rate model, assumes completely mixed zones of immobile

water, with a first-order rate expression describing diffusional
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transfer of solute between the mobile and immobile regions (Coats and

Smith, 1964; van Genuchten and Wierenga, 1976). These models couple the

advection/dispersion equation with a first-order rate expression.

First-order rate models have successfully simulated the observed tailing

in laboratory column solute transport experiments (van Genuchten and

Wierenga, 1977; van Genuchten et al., 1977; De Smedt and Wierenga,

1979a; Nkedi-Kizza et al., 1984). Analytical solutions for this type of

model have been derived for different initial and boundary conditions

applicable to finite and semi-infinite columns (Lindstrom and Narasimhan,

1973; van Genuchten and Wierenga, 1976; De Smedt and Wierenga, 1979b).

More complex models have been developed to describe the transfer of

solute within immobile regions by Fick's second law of diffusion. These

models, which couple the advection/dispersion equation with an expres-

sion to describe diffusion, will be referred to as diffusion models.

Diffusion models have also been successfully used to simulate the ob-

served tailing in laboratory column solute transport experiments (Rao et

al., 1980; Nkedi-Kizza et al., 1982). These models assume a geometry

for the immobile region. One-dimensional analytical solutions to diffu-

sion models have been derived, for semi-infinite boundary conditions,

assuming spherical (Pellett, 1966; Rasmuson and Neretnieks, 1980),

rectangular (Sudicky and Frind, 1982), and cylindrical (Pellett, 1966;

van Genuchten, 1985) immobile region geometries. Van Genuchten (1985)

summarizes solutions for different immobile region geometries.

Recent research has begun to focus on solute transport in "semi-

controlled" field settings (Leland and Hillel, 1982; Roberts et al.,

1982; Sudicky et al., 1983; Mackay et al., 1986). Solute pulses have

been introduced into groundwater under conditions corresponding to an

infinite medium, in which the medium is effectively unbounded upgradient

from the point of introduction as well as downgradient from the point(s)

of observation. To permit proper analysis of the data from the perspec-

tive of dispersion and diffusion phenomena, solutions to the transport

equation under the pertinent boundary conditions in a three-dimensional

infinite medium are required. Although one-, two-, and three-

dimensional solutions to the advection/dispersion equation in an infi-

nite porous medium are available (Carslaw and Jaeger, 1959; Bear, 1972;

Hunt, 1978), of the two-region models, only the first-order rate model

has been solved analytically for infinite, multi-dimensional conditions
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(Carnahan and Remer, 1984). Bibby (1979) combined a two-dimensional

finite element model with an analytical expression describing solute

diffusion into layers, to simulate chloride movement in a chalk aquifer.

However, to date, no multi-dimensional analytical solutions to diffusion

models have been presented. Such multi-dimensional solutions, with

infinite boundary conditions, are presented in this chapter.

ADVECTION/DISPERSION MODEL SOLUTION

Sorbing solute transport through a porous medium has often been

described using the advective/dispersive transport equation with a

sorption term (Bear, 1972):

2 2 2C
__ 2*Zt .D'aC + _2 D aC _ C S

aC t+D' D' D' v P - (2-1)
at x ax2 ay 2  z az 2  0ax eat

where C(x,y,z,t) represents the aqueous solute concentration, S(x,y,z,t)

is the sorbed solute concentration, e is the aquifer porosity, p the

bulk soil density, Dx, D, and D' are the principal components of the

dispersion tensor in the x-, y-, and z-directions, respectively, and vo

is the average pore water velocity. Equation 2-1 implicitly assumes

steady, uniform flow in a homogeneous, isotropic porous medium. If

linear, reversible, equilibrium sorption is assumed, sorbed and aqueous

solute concentrations may be related using the concept of a partition or

distribution coefficient, Kd, such that:

S - KdC

With these assumptions, a dimensionless retardation factor, R, can be

defined:

R=I+P Kd

so Eq. 2-1 can be rewritten as (Bear, 1972):

D' a2C D' a2C D' a2C v acaC(x'y1'z't) = - + - + -i - - 0 (2-2)
at R x2 R 2 R 2 Ra

axay az a
Equation 2-2 has been solved for the following initial/boundary condi-

tions, representing an instantaneous point source in an infinite medium:
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C(x'yzO) " TR_ 6(x)6(y)6(z) (2-3a)

C(*"y,z,t) - C(x,*mtz,t) - C(x,y,*ot) - 0 (2-3b)

The solution is (Carslaw and Jaeger, 1959; Crank, 1975; Hunt, 1978):

(Rx-v0 t)
2  Ry2 Rz2

MH R 1 2  4D'Rt Dt- 4D' t
C(xyzt) 3 e (2-4)

80( rt) /DD'D'x y z

FIRST-ORDER RATE MODEL SOLUTION

We will begin our discussion of the two-region models by deriving

the solution to the first-order rate model in a three-dimensional, infi-

nite medium. This derivation will serve as a guide for the solution of

the slightly more complex diffusion models.

In three dimensions, the first-order rate model for sorbing solute

transport in a porous medium with immobile water zones may be written

(van Genuchten and Wierenga, 1976):

acm(xyzt) Dmx a2C +D 2aC D az a2 C Vm m 0 imRim aCim

at R ax2 Rm ay2  R m az2 Rm ax %mRm at

(2-5)

aC im (x'yzt) _'

- (C - C I) (2-6)tOimRim m i

These equations assume groundwater flow in the positive x direction, and

that Dmx, Dmy , and Dmz represent the mobile zone dispersion coefficients

in the x-, y-, and z-directions. Cm and Cim represent solute concentra-

tions in the mobile and immobile regions, respectively, and 0m and eim

are mobile and immobile region water content, such that 8 - em + aim.
Equation 2-5 is the advection/dispersion equation with a sink term to

describe the mass transfer of solute from the mobile to the immobile

water region. Sorption onto the solids is assumed to be linear and

reversible, with the effect of sorption incorporated into Rm and Rim,

the retardation factors for the mobile and immobile regions. Following

van Genuchten and Wierenga (1976), define:
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R -1+ d

Im

and

Rj~ml+(l-f)pKd
Rim " I + iem

where f is the fraction of sorption sites adjacent to regions of mobile

water. Equation 2-6 is the first-order rate expression describing

solute transfer between the mobile and immobile regions, where a' is the
first-order rate constant.

For an instantaneous point source of solute in an infinite porous

medium, the following initial/boundary conditions apply to 2-5 and 2-6:

CM(x,y,z,O) - P 6(x)6(y)6(z) (2-7a)

C im(X,y,z,O) - 0 (2-7b)

Cm(*,Y.zt) - Cm(x,*$,z,t) - Cm(X,y,p*,t) - 0 (2-7c)

Equation 2-7a represents the initial solute distribution in the mobile

zone, (2-7b) states that there is initially no solute in the immobile

region, and (2-7c) gives the boundary conditions for an infinite medium.

The method to solve (2-5) and (2-6) simultaneously, subject to

initial/boundary conditions (2-7), is given in Appendix A. The solution

is

i~t
Cm(Xyzt) - exp(j )G(xmy,z,t) + 0 f H(t,-r)G(x,y,z,r)d-r (2-8)

where

(0 R ) /2 2*1 e Is Rin(t -" ).]1/2

H(t,r) " exp[-;() _ ,B (" I )l/21I R { i 2 :  ii
a m [ isRim(t-T)t I12

1 RmI/2 (lm - t2 y2 Rm2

G(x,y,z,t) M t (R-a y /2 /7 exp[ ( R t x - 4Dt 2t

Bea(WO 3 /2 (PD DD z) 1 4mt Q my Tmz t

9



and IId I is a modified Bessel function. This solution is equivalent to

the solution presented by Carnahan and Remer (1984).

The principle of superposition can now be used to integrate the

point source response to obtain responses for other initial conditions.

Carnahan and Remer (1984) provided solutions for various initial condi-

tion geometries.

DIFFUSION MODEL SOLUTION

For diffusion models, Eq. 2-5, the advection/dispersion equation,

is still applicable. However, since these models allow for concentra-

tion gradients within the immobile regions, the dependent variable Cim

in (2-5) now represents a volume-averaged solute concentration within

the immobile zone. Of course, in the first-order rate model, where the

immobile zone is assumed to be perfectly mixed, the solute concentration

throughout the immobile zone equals the average concentration.

Spherical Geometry

Equation 2-5 makes no assumption regarding the immobile zone geome-

try. Assuming spherical immobile zones of radius b, the volume averaged

concentration, Cim, can be defined as follows:

Ci. - 3 3 r2C a(r,x,y,z,t)dr (2-9)

b 0

Fick's law of diffusion within a sphere is written:

3Ca  D' C

R D;a(r2 a 0 <r < b (2-10)imt r 2

with the boundary conditions:

Ca(0,x,yz,t) * - (2-11a)

Ca(b,x,y,z,t) - C,(x,y,z,t) (2-11b)

The method to solve (2-5), (2-9), and (2-10) simultaneously, for an

instantaneous point source, subject to initial/boundary conditions (2-7)

and (2-11), is presented in Appendix B. The solution is:
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C(x,yzDexp(v 2D )

eRtm( b)2(D x D myD mz)/2

1/2 2D A 2t
R /2'GZ )]dX 2-2x f[A exp(- a GZ p) Cos(---- R2 (2-12)

imb

where:

X2 2 +21/

mx my mZ

r + 0x 1/2  1/2

r. 2 +A2 1/2
1 2 )

v2 3e D'

~1i4D M + im e

mm%

2D'X 2  36 D'

2 R e + R2
im Ramb2

- A(Sinh 2A + Sin 2x) _ 1
Cosh 2X - Cos 2A

A(Sinh 2X - Sin 2X)

2 Cosh 2X - Cos 2X

Superposing this solution will provide responses for other initial con-

ditions. It should be noted that solving for C. in Eq. 2-12 requires

the evaluation of an infinite integral. The integrand of this integral

is the product of an exponentially decaying function and a sinusoidally

oscillating function. The Gaussian quadrature methods described by

Rasmuson and Neretnieks (1981) and van Genuchten et al. (1984) may be

used to evaluate the integral numerically.

Cylindrical Geometry

For cylindrical immobile zones of radius b, the volume averaged

concentration is:
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2b
C m 2 b2 fO rCa (rgx'y,zt)dr (2-13)

b 0

and Fick's law of diffusion in a cylinder may be written:

aC DI a'
Ri' - 3(r a- 0 < r < b (2-14)

with the boundary conditions (2-11a) and (2-11b). The analysis proceeds

analogously to the spherical geometry case, with the three-dimensional

point source response the same as (2-12), but in the case of cylindrical

geometry:

A ~ [Ber(Ar2)Ber'(A/) + BeiOA)Bei'(AV'Y))

Ber2 (AV/) + el2 (A/2)

(2-15)

--*A[Ber(A/_)Bei'.A/d2) - Bei(AV/2)Ber'(A/2)]

#2 = Ber2 (A/) + Bei 2 2)

Rectangular Geometry

In the case of a rectangular immobile zone, it is physically more re-

alistic to consider advective/dispersive transport in a two-dimensional

mobile zone with diffusion into rectangular immobile zone layers of

half-vidth b. The set of equations which describes such a system is:

D 2 2
BCS(xy,t) D 2c V PC eimRim cim (. -- + -- (2-16a)
at R a ax 2  Ra ay 2  R mX 9x %R at

R 0 < z < b (2-16b)ismat e z 2

bim f 0 Ca(xyzt)dz (2-16c)

vith the initial/boundary conditions:

Cm(x,y,O) - eM 6(x)a(y) (2-17a)

Ci(x,y,0) - 0 (2-17b)
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Cm(*,yt) - CM(x *-,t) - 0 (2-17c)

Ca(XyOt) * - (2-17d)

Ca(xy,b,t) - Cm(xyt) (2-17e)

Using the methods given in Appendix B, these equations can be

solved to give the following result:

2D;Mjexp(v x/2D )
C a(x,y,t) - i 2 m x112

0Xy R im(wb)2(Dmx D my)

12DX2 t 1/2 1/2
x f Re{exp[ e ] Ko[RLm/BZp + iR BZ1jdX (2-18)

0 Rimb2

where:

B x2 +y2 )

mx Dmy

Ko is a modified Bessel function of the second kind, and Zp and Z. are

as defined in Eq. 2-12, though for rectangular geometry:

X(Sinh 21 - Sin 21)

3(Cosh 21 + Cos 21)

X(Sinh 21 + Sin 21)
2 3(Cosh 21 + Cos 21)

MODEL TESTING

In the limiting case, as the volume of water in the immobile region

becomes small, and the diffusion rate within the immobile region becomes

large, the diffusion model solution should approach the solution of the

advection/dispersion model. To verify this, a test situation, which is

depicted in Figure 2.1, was devised. The concentration response to a

rectangular prism initial solute distribution of half length, width, and

depth L, M, W, respectively, may be calculated at a sampling well using

the advection/dispersion and spherical diffusion models. The solution

to the three-dimensional advection/dispersion model for a rectangular

prism source is well known (Carslaw and Jaeger, 1959; Hunt, 1978). This

13
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Figure 2.1. Initial condition for three-dimensional model testing.
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Figure 2.2. Comparison of the advection/dispersion model solution vith
the limiting case of the spherical diffusion model: $ -

0.999, v - 0.091 m/d, e - 0.38 D - 0.0334 m /d, D_
" 0.0027v2/d, Dmz , 1.0 x 10- 5 m2"Id, ' - 5.0 m, m - 0.0 M,
n - -0.40 m, L ="1.5 m, .1 = 3.0 m, N - 0.8 m, Rm = Rim -
3.0, and D;/b2 - 0.715 d- .
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solution, for realistic parameter values, is plotted in Figure 2.2, as a

breakthrough response curve at the sampling well. Also shown in Figure

2.2 is the solution to the spherical diffusion model with very low

porosity in the immobile region [aim - 0.00038] and relatively fast

diffusion [De/(Rimb2) - 0.238 d- 1] within the immobile region. This

solution was obtained, for a rectangular prism initial distribution, by

numerically superposing the point source response (Eq. 2-12) over the

length, width, and depth of the initial solute distribution. As ex-

pected, the solutions are identical, because the fraction of porosity in

the immobile region was chosen to be so small as to be practically

negligible.

Another means of testing the diffusion model solution makes use of

the concept of approximate equivalence between the first-order rate

model and the diffusion model. Van Genuchten (1985) showed that the

concentration responses for the two models would be approximately the

same if the first-order rate parameter and the spherical diffusion rate

parameter were related by the expression:

a' - 22.68 b----  (2-19)

The solution to the first-order rate model for a rectangular prism

source may be obtained by superposing the point source response

(Eq. 2-8) over the length, width, and depth of the initial solute dis-

tribution. This solution is Eq. 2-8 with:

M[R m(L+x) - vt R (L-x) + v t
G~x~ ~ SRt - f- erf[ 112] + ef

mem 2(D Rt)l/2 2(DmxRMt0 /2

R a(M-y) R (M+y)
x ferf[2172] + erf[ 2m --- 7/2]}

2(D Rt) 20mymRat

Rm(N-z) R (N -z)

x ferf[2(zTl2-] + erf[ mR t) 172]l (2-20)
2(D R t) 2(D R t)

Figure 2.3 shows the first-order rate model solution (Eqs. 2-8 and 2-20)

for some realistic parameter values.

15
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Figure 2.3. Comparison of the first-order rate and spherical diffusion
model olution3: * = 0.90 v - 0.091 m/d, e 0.38, Dx -
0.02 m'/d, Dm - 0.0016 mi/d= D - 0.6 x 10- m2d, t,
5.0 m, m = 0. m, n - -0.40 m, T - 1.5 m, M - 3.0 m, N -
0.8 m, R. - 2.78, and i m - 5.00.

Using Eq. 2-19, an equivalent spherical diffus'ion rate parameter

may be obtained for use in the spherical diffusion model. As can be

seen in Figure 2.3, the solutions of the first-order rate model and the

spherical diffusion model are similar in form, but differ slightly in

detailed shape. In Chapter 4, the concept of model equivalence will be

discussed in more detail.
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CHAPTER 3

MOMENT ANALYSIS

In the preceding chapter, models were presented that describe solute

transport by integrating either a diffusion expression or first-order

rate expression into the three-dimensional advective/dispersive equa-

tion. A convenient means of quantitatively studying the solute plume

behavior predicted using such two-region or physical nonequilibrium

models is to examine the moments in space and time of the models' simu-

lated concentration distributions. In this chapter, a three-dimensional

form of Aris' method of moments is presented, and then used to derive

temporal moments associated with the mobile and immobile regions. In

addition, a one- and three-dimensional spatial analog to Aris' method is

developed, and used to examine spatial moment behavior in both the mobile

and immobile regions. The moment analysis is extended to assess the

effect of model dimensionality on the form of the moment expressions.

TEMPORAL MOMENT EQUATIONS

Mobile Region

Based on the definitions of the jth absolute temporal moment of a

solute concentration distribution, Cm(x,t):

- f ticm(x,t)dt (3-1)mjt 0

and the Laplace transform of the function Cm(x,t):

L[Cm(x,t)] i(xs) f e- s t C (x,t)dt (3-2)

03-

where a is the Laplace transform variable, Aris (1958) showed that:

m t  (-1)lim I 1' 1 (3-3)
s+0 do

Equation 3-3, referred to as Aris' method of moments, is quite useful,

since it allows the calculation of temporal moments without having to

invert the Laplace transform. Arl' method has been widely used,

17



particularly in chemical engineering research, to analyze the temporal

moments of concentration responses simulated by models which combine

one-dimensional advective/dispersive transport with a diffusion

expression (Kucera, 1965; Schneider and Smith, 1968; Wakao and Kaguei,

1982; Valocchi, 1985a).

Extension of Aris' method to two and three dimensions is straight-

forward, though as far as can be ascertained, has not been utilized

previously to describe solute transport. In three dimensions, Eq. 3-3

can be rewritten:

dJC (x,y,z,s)

- (- ) lim I- M_(x i - ,s) (3-4)s O8+ dsj

Table 3.1 presents one- and three-dimensional solutions, in the

Laplace domain, for the mobile region concentration distributions of the

local equilibrium, first-order rate, and diffusion models. These

Laplace domain solutions are obtained from the derivations given in

Appendices A and B.

Equation 3-3 can be applied to the one-dimensional expressions for

mobile solute concentration listed in Table 3.1a. It is convenient to

present the resulting moments in normalized form, where the jth normal-

ized moment U ht is defined as:

.- l (3-5)
P3Jt mO,t

Results for the zeroth, first, and second normalized absolute temporal

moments are presented in Table 3.2. The moments for the local equilib-

rium and diffusion models have been reported previously by Kucera

(1965), who used initial/boundary conditions identical to those used

herein.

Similarly, Eq. 3-4 may be applied to the three-dimensional expres-

sions In Table 3.lb. The temporal moments for the three-dimensional

models are presented in Table 3.3.

An examination of Tables 3.2 and 3.3 reveals several important fea-

tures of the moments. In one dimension, the zeroth absolute temporal

moment, mo,t, is constant for all three models, and is equal to M1 /v.

The v term in the denominator is due to the model initial condition,

which is expressed as a Dirac pulse of the solute in space (units of [MI),

18
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TABLE 3.1

MOBILE REGION SOLUTE CONCENTRATION IN THE LAPLACE DOMAIN
FOR VARIOUS MODELS

a. One-Dimensional

vx/2Dx-m
' x s = I e e(-Xl/ s

2/5 9 (s)

where a(s) - + N2

X

and N2 . s for the local equilibrium model

N2 . CBS + s for the first-order rate model

N2 . 8b Sinh(wb) + a for the layered diffusion model
wb Cosh(wb)

N - -b+ s for the cylindrical diffusion model
wb I (wb)

[-r 3B si1I(wb)
N2 .b i (wb) + s for the spherical diffusion model

b. Three-Dimensional

-- F e-Gn(s)
C (xy,z,s) -

vx/2D

where 
F M

4r /D D D
xy z

2 22
and G = + 5_

x y z

n(s) is defined as above
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TABLE 3.2

ABSOLUTE TEMPORAL MOMENTS FOR 1-D MOBILE SOLUTE CONCENTRATION RESPONSES

Local Equilibrium First-Order Diffusion
Model* Rate Model Model*

m0, t Ml/v M1/v Ml/V

2Dx  2D 2D

2"2t v v 2 v 2v v v

2 6DxI 12D 2  2 6DxI 12D 2  2 6D I 12D 2+ , _ -H- * [-I * + * l18 -- ] 2 [1- + X + --- 1+8* 2
V V V V V V V V V

4D 4D

V v

v(v + 2)De
where a -

b2

and v = 1 layered diffusion

v - 2 cylindrical diffusion

v = 3 spherical diffusion

*From Kucera (1965).

whereas the zeroth moment of a temporal distribution (one dimensional

concentration versus time) has units of [ML-IT]. Thus, to transform the

zeroth moment of the initial condition in space [M] to the zeroth moment

of a one-dimensional temporal distribution [ML-IT], it is necessary to

multiply by a factor with units [L-IT]. That factor is the constant I/v.

*As expected, the zeroth moment for the one-dimensional models is

independent of both the diffusion rate and model type, since all the

mass which was initially put into the one-dimensional space must even-

tually flow past the sampling point. Perhaps less obvious is the fact

that the zeroth moment is independent of the diffusion rate and model

type for the three-dimensional models as well. However, considering

a pathway connecting the initial solute distribution with any partic-

ular sampling location, it can be seen that, although diffusion would

affect the speed with which solute "particles" reach the sampling point,

20
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TABLE 3.3

ABSOLUTE TEMPORAL MOMENTS FOR 3-D MOBILE SOLUTE CONCENTRATION RESPONSES

Local Equilibrium First-Order Diffusion
Model Rate Model Model

F-G (v/2VD) F ~ v2/F) F G(v/2i'F-)

mo t  e e -e

GVD_ G /DG
Jiit v ---- (1+8) (1+8)

G2Dx 2GD3/2  G2 D 2GD3 / 2  G2 D 2GD3 / 2

, +  G - (1+0)2+ x (1+8)2 G-- (1+8)2+ x (1+8)2
V V V V VV

2G /D 2G
+ x + -

V C V a

v(v + 
2)De

where a - b 2

and v 1 1 layered diffusion

v - 2 cylindrical diffusion

v - 3 spherical diffusion

vt/2Dx

Me X

F _ __

4ir /D D D
xyz

2 m2 n2

D D D
x y z

the total amount of solute sampled would be dependent only on the total

injected mass (M3 ), the sampler location (1,m,n), and the hydrodynamic

parameters (v, Dx, Dy, Dz).

It is interesting to compare the temporal first moments obtained

from the one-dimensional and three-dimensional models. Considering the

first moment of the three-dimensional models along the line of advective

transport (m - n - 0), it is found:

= -- (3-6)lt v

for the local equilibrium model, and
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j (- + )(3-7)

for the first-order rate and diffusion models. These values are less

than those of the one-dimensional models by a constant 2Dx/V2 for the

local equilibrium model, and 2Dx(l+B)/v 2 for the physical nonequilibrium

models. This effect, of essentially delaying the arrival of the center

of mass of the one-dimensional models, is due to the fact that with

the three-dimensional models, solute which disperses in the negative
x-direction may eventually disperse in the y- and z-directions as well,

thereby never passing the sampling point on the y - z - 0 axis. How-

ever, with the one-dimensional models, the solute which has dispersed in

the negative x-direction will nevertheless eventually pass the sampling

point, thereby increasing the first temporal moment. For the same

reason, the second temporal moments of the one-dimensional models are

greater than those of the three-dimensional models along the line

y M z 0.

Immobile Region

The methods of the preceding section may be applied to determine

the temporal moments of solute associated with the immobile regions.

Before commencing the analysis, however, some explanation is required to

define what is meant by the concentration distribution associated with

the immobile region.

With regard to the temporal moments, the immobile region concentra-

tion response would be obtained by sampling the immobile region at a

point in space. Conceptually, imagine a sampling point which yields

volume-averaged solute concentrations from a region of immobile water.

To insure mass balance, it is necessary to multiply moments obtained

from the immobile region concentration distribution by a weighting

factor. This weighting factor is required because solute is unevenly

distributed between the mobile and immobile regions. To determine the

value of this weighting factor, compare the total solute masses associ-

ated with the mobile and immobile regions of an incremental volume of

aquifer (d). The total mass associated with the mobile region (aqueous

plus sorbed) is CmemRmdV, and the total mass associated with the immo-

bile region (aqueous plus sorbed) is CimeimRimdV. The ratio of immobile

to mobile solute masses is therefore:
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C im Ri BCm

C Rm C

Thus, to insure proper mass balance, moments obtained from the immobile

region concentration distribution must be multiplied by the weighting

factor S. Therefore, the jth temporal moment of the immobile region

concentration distribution may be defined as:

njt f tj CCi3(xt)Jdt (3-8)
0

Of course, for the local equilibrium model, B - 0, and these moments are

identically zero.

The immobile region analogs to Eqs. 3-3 and 3-4 are:

dC7 m(x s)
njt - B(-1) llim [ im (3-9a)

d'Cclm(x Yzoo)

0 (-1 )i lim [- ] (3-9b)
8+O ds

Equations 3-9a and 3-9b require solutions for the immobile concentra-

tions in the Laplace domain, for the various models. Table 3.4 lists

these solutions in one and three dimensions. The zeroth and first

moments, obtained by applying Eqs. 3-9a and 3-9b to the immobile solute

concentration expressions listed in Table 3.4, are presented in Table

3.5. As with the mobile concentration response moments, it is conve-

nient to express moments greater than the zeroth in terms of normalized

moments, defined as:

. (3-10)
vj,t no't

Compare Tables 3.2 and 3.5, to find that:

I no,t - +0 H1  (3-11)

for the one-dimensional physical nonequilibrium models. This is again

due to the conversion of an initial condition in space to a zeroth

moment in time. It should be noted, however, that the conversion factor

23
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TABLE 3.4

IMMOBILE REGION SOLUTE CONCENTRATION IN THE LAPLACE DOMAIN
FOR VARIOUS MODELS

One-Dimensional

s a C(xs) for the first-order rate model8's  + am

(x~s) - Sinh(wb) C (xs) for the layered diffusion modelCurxn s =b Cosh(wb)m

21II(ub)_

im(x 's )  b Io(wb) C(xs) for the cylindrical diffusion model
im Wb 1 (wb)

C(xs) b io(wb) C(xs) for the spherical diffusion model

where ?(xs) for each model is defined in Table 3.1.

Three-Dimensional

Cim(xqy 'z 's) - E (x,yzs) for the first-order rate model

-- yZts) - Sinh(b) C (xy,z,s) for the layered diffusion model
Cim (x  wb Cosh(wb) m

-2II(i b)

C--t(XqyDZS) " r (x,yz,s) for the cylindrical diffusion model
wb 10(wb) m

Ci3 (xqyqzqs) , b 1 (wb) C%(x'y'Z's) for the spherical diffusion model

where C (x,y,s,) for each model is defined in Table 3.1.

for the total solute, mobile plus immobile, is (l+B)/v, whereas for the

mobile solute alone, the conversion factor was 1/v. This is because the

total solute mass movement is slower than the mobile region mass move-

ment due to the influence of the immobile region.

This effect can be seen more clearly by comparing the first tem-

poral moments of the mobile and immobile solute concentration responses.

The first moment of the immobile region response lags the first moment

of the mobile by a constant: l/a for the first-order rate model, and

1/a for the diffusion models.

24
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TABLE 3.5

ABSOLUTE TEMPORAL MOMENTS FOR IMMOBILE SOLUTE CONCENTRATION RESPONSES

First-Order Diffusion
Rate Model Model

One-Dimensional

no t v v

(+8) 2Dx(+) 1 (1+0) + (1+)

vt v 2 a v a
V v

Three-Dimensional

F G~/2D F -Gv2xnoIt  0 1 e 0 - e

G V'D 1 V/D1vj t  -v- (1+0) + - (+B)+ avv a

v(v+2)De
where a - b2

and v = 1 layered diffusion

v - 2 cylindrical diffusion

v - 3 spherical diffusion

S = 3  e v /2Dx G t

7D DDSD D _xyz x y z

SPATIAL MOMENT EQUATIONS

Mobile Region

Analogous to definitions (3-1) and (3-2), the one-dimensional jth

absolute spatial moment of the concentration distribution, C.(x,t), is:

aj - a xJC 2 (x,t)dx (3-12)

and the Fourier transform of the function, Cm(xt), is defined by:

[Cm(Xt) ] -. (Pt) - e - px C,(x,t)dx (3-13)
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where p is the Fourier transform variable. Using the following property

of the Fourier transform (Spiegel, 1968):

F[xJCm(x,t)] o e-iP x X1Ca(x,t)dx - ii d]CM(p't) (3-14)

--XdpX 3-1dpi

take the limit as p + 0 to find:

fd 1l 3(pmtdJ(3-15)

Sx JCm(xt)dx - (3-15)
-- p+O dpi

and then using Eq. 3-12 write:

dJ(p,t)

1 ij lim[ m (3-16)
p+O dp

This is the one-dimensional spatial analog to Aris' method of tem-

poral moments. Although Eq. 3-16 is a well known property of Fourier

transforms (Bremermann, 1963; Bracewell, 1978), it apparently has never

been used previously to obtain moments of spatial concentration distri-

butions for solute transport models.

The extension of Eq. 3-16 to two and three dimensions is straight-

forward. In three dimensions, the absolute spatial moment of the con-

centration distribution C3(x,yz,t) is:

jk f f f xyk z Cm(x,y,zt)dxdydz (3-17)

f t -0 -m - ik

The Fourier transform in three dimensions is defined (Bracewell, 1978)

by

ICr(x,y,zgt)] - C(p,q,u,t) -

fe f f e-i(px+qy+uz) CM(x,y,z,t)dxdydz (3-18)

where p, q, and u are the Fourier transform variables in the x-, y-, and

s-directions, respectively. With these definitions, follow the one-

dimensional analysis directly to find:

ij4k+t lim dJ d k ]} (s~u (3-19)
p.O dpI dq dut

q.O
u+O
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As with Aris' method for temporal moments, these spatial moment equa-

tions, (3-16) and (3-19), are quite useful, since they allow the calcu-

lation of moments in the Fourier domain, thereby eliminating the need

for complicated inversions of the transforms.

Appendix C presents the details of deriving the absolute spatial

moments for the local equilibrium, first-order rate, and diffusion

models. The method followed for all three models is essentially the

same. The model equations, with appropriate initial/boundary conditions

for a solute pulse in an infinite medium, are Fourier transformed. The

equations are then solved in the Fourier domain for Cm(p,q~u,t).

Equation 3-19 is then applied to obtain the zeroth, first, and second

absolute spatial moments. The derivations were done using the three-

dimensional formulae. Conversion of the three-dimensional results to

one dimension is trivial, using the relationships:

-0 moo 0  (3-20a)

al M 1 0 0  (3-20b)

m 2 = i 2 0 0  (3-20c)

Thus, in space, model dimensionality has little effect on the moments.

However, in time, model dimensionality plays an important role.

Table 3.6 presents the spatial moments for the three models, where

S mjkI (3-21)
P~kl mOo

defines the normalized absolute moment. The local equilibrium model

results are well known (e.g., Freyberg, 1986). Valocchi (1985b), using

a method different from that presented here, derived the moments in

space for the first-order rate model. The diffusion model moments

presented in Table 3.6 are new.

Immobile Region

The methods of the preceding section may be applied to determine

the spatial moments of solute concentration associated with the immobile

region. Analogous to Eq. 3-8, which defines the temporal moments of

immobile region solute, we may define the spatial moments for the immo-

bile region as:
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njk f f x Jykz[SCim(x,y,z,t)]dxdydz (3-22)

and

kt= n000

Again, for the local equilibrium model, B = 0, and the immobile region

moments are identically zero. The immobile region analog to Eq. 3-19

is:

n ij~kt limd J f d k  [dleim (P,q,u,t) (-3

Jkt = 8 i t p+O dpJ dq dut ] (3-23)

q O
u.O

Equation 3-23 may be applied to the Fourier transformed immobile region

concentration, Cim(p,q,u,t), to obtain the immobile region moments.

Details of deriving the immobile region spatial moments for the first-

order rate and diffusion models are presented in Appendix D. Expres-

sions for the zeroth and first immobile region moments are listed in

Table 3.7. Valocchi (1985b) derived the first-order rate expressions

shown in Table 3.7 by a different method.

Testing

Evaluation of the temporal moments for all three models, as well as

evaluation of the spatial moments for the local equilibrium and first-

order rate models, is straightforward; and in fact can easily be accom-

plished using a hand-held calculator. However, calculation of the

diffusion model spatial moments requires numerical evaluation of an

infinite integral using the Gaussian quadrature technique of Rasmuson

and Neretnieks (1981) and van Genuchten et al. (1984); as well as evalu-

ating a limit as the parameter e approaches zero. Therefore, it is

essential to assess the accuracy of the numerical evaluation, as well as

to determine the appropriate values of e to use.

One way to test the solution's accuracy is to compare the solution

with the known solution of a limiting case. As 8 approaches zero, the

diffusion model's spatial moments should approach the known spatial mo-

ments of the local equilibrium model. Figure 3.1 shows the relative error
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Figure 3.1. Relative error of the spherical diffusion model mobile re-
gion spatial moment calculation (comparison with limiting
case of equilibrium transport): v - 0.1 m/d, Dx = 0.04
M2/d, De/b - 0.006 d- 1 , 8 0.0001, and t

versus log(c) for the spherical diffusion model's zeroth, first, and

second spatial moments in the mobile region, where relative error is

defined as:

ILE moment - Diffusion moment iRelative Error = LE moment (3-24)

Since the parameter, c, has units of IT-1 ] (see Table 3.6), it is

important that e be small with respect to the other rate constants in

the solution: a, a/B, and 1/t. Thus, the constraint is imposed that:

c<< in(a, a/B, l/t) (3-25)

For the parameters used in Figure 3.1,

in(a, a/B, l/t) - 0.01 (3-26)

From Figure 3.1, it is seen that the relative error of the zeroth moment

solution approaches zero for log c < (-4). For the first moment, if
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(-8) < log c < (-4) the relative error is small, and for the second

moment solution, if (-5) < log c < (-4), the relative error is small.

For the zeroth, first, and second moment solutions, an upper bound on c

may be defined by the expression:

s < O.01[Min(a, a/$, 1/t)] (3-27)

However, to evaluate the first and second moments, there also is a

lower bound on c, as the definite integrals in the first and second

moment formulae approach minus infinity as the lower limit of integra-

tion approaches zero. Thus, at very small values of c, numerical errors

in the quadrature technique used to evaluate the definite integrals

become substantial. This is not the case for the zeroth moment integral;

consequently, there is no lower bound on c in the zeroth moment evalua-

tion.

The lower bound of £ in the first and second moment solutions is

dependent not only on the model parameters, but also on machine preci-

sion. In practice, to be confident of a first or second moment value

obtained using the formulae in Table 3.6, it is necessary to calculate

the solution over a range of values for c, thus obtaining a plot similar

to that shown in Figure 3.1. A flat region will usually be found, where

the moment will not vary over a range of one or two orders of magnitude

for c. This value for the moment is correct within a few percent, as

can be seen from Figure 3.1.

Another test is to compare the moments calculated using the formu-

lae in Table 3.6 with the moments calculated by actually computing the

spatial distribution of the solute, using formulae derived in Chapter 2,

at repeated points in space, and then using a numerical quadrature tech-

nique to obtain the moments of the distribution. Figure 3.2 gives a

plot of the relative error versus log(c) for the spherical diffusion

model, where the relative error is now defined as:

IMoment from distribution - Moment from formulal
Relative error - (3-28)

Moment from distribution

In comparing the errors of the moment estimator (Figures 3.1 and 3.2),

it is apparent that, with the zeroth and first moments, an acceptable

accuracy is assured over many orders of magnitude of E. However, the

window of acceptable accuracy is much narrower in the case of the second
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Figure 3.2. Relative error of the spherical diffusion model mobile
region spatial moment calculation (comparison with
numerically evaluated moments): v - 0.1 m/d, Dx W 0.004
m2/d, De/b 2 = 0.006 d- 1 , s - 0.25, and t = 100 d.

moment, being confined to 1 to 2 orders of magnitude in E in the example

shown.

A similar plot can be obtained for the zeroth and first immobile

region moments, by comparing the formulae for the spherical diffusion

model (Table 3.7) with results obtained by numerically integrating the

immobile region concentration distribution. The immobile region concen-

tration distribution was obtained by using the IMSL subroutine FLINV

(IMSL, 1982) to numerically invert the Laplace domain solution for the

immobile region concentration (Table 3.4), at repeated points in space.

Figure 3.3 gives the relative error versus log(c) for the zeroth and

first immobile region moments of the spherical diffusion model.

For the parameter values used in Figures 3.2 and 3.3:

Min(a, a/$, l/t) - 0.01 (3-29)

Again,

c < 0.01[Min(a,a/8, l/t)] (3-30)
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defines an upper bound on c. Note, too, the sensitivity of the first

and second moment solutions to excessively small values of c.

In summary, the numerical evaluation of the zeroth moment formulae,

shown in Tables 3.6 and 3.7 for the geometrical diffusion models, is

straightforward, as long as c is two orders of magnitude less than

Min[a, a/0, l/t]. Evaluation of the first and second moments is not as

straightforward, since e has a lower bound criterion which must also be

satisfied, and which is not easily defined. When evaluating the first,

and particularly the second moment formulae, it is necessary to deter-

mine how the result varies over a range of e, before accepting a value

for the moment. In some cases, there is a possibility that no value of

c can be found which meets both lower and upper bound criteria. This is

especially true when evaluating the second moment, where, judging from

Figures 3.1 and 3.2, the lower bound of c can be orders of magnitude

greater than the lower bound of the first moment formula.
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TEMPORAL VERSUS SPATIAL DATA

Using the relationships derived above, which permit determination

of temporal and spatial moments given parameters for the three models

under discussion, it is possible to find how certain effective parame-

ters behave with respect to model type, and with respect to type of

measurement (in space or time). In particular, an effective velocity

(veff) and an effective dispersion coefficient (Deff) will be derived in

terms of model parameters. These effective parameters are local equi-

librium model equivalents which approximately duplicate the concentra-

tion responses of the physical nonequilibrium models. Use of these

effective parameters will aid in understanding how the general behavior

of the spatial and temporal concentration distributions differ.

Behavior of Mobile and Immobile Temporal Responses

Effective velocity and dispersion coefficients may be defined in

terms of the temporal moments as follows (Valocchi, 1985a):

veff ' (3-31a)
t

and

Def U2 ,t 2eff  v 2 t eff (3-31b)

where

is the central second moment.

Thus, using the expressions for the mobile region temporal moments

in Tables 3.2 and 3.3, it is straightforward to determine Veff and Deff

in terms of the parameters of the one- and three-dimensional local equi-

librium, first-order rate, and diffusion models.

Table 3.8a lists the effective parameters in one dimension for the

three models, making the assumption of large Peclet number (Pe - vX/Dx

>> I). Table 3.8b lists the effective parameters in three dimensions,

along the line y - z - 0. Due to the assumption of large Peclet number

in the one-dimensional case, the effect of dispersion in the negative

x-direction (which was discussed earlier) becomes negligible, so that

the one- and three-dimensional solutions are identical. Of course, since
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TABLE 3.8

EFFECTIVE VELOCITY AND DISPERSION COEFFICIENTS FROM TEMPORAL MOMENTS

Local Equilibrium First-Order Rate Diffusion
Model Model Model

a. One Dimension (at high values of Pe)

v vVeff v

DX  v2 Dx + v 2
eff x 1+6 +3 1+8 31++83 + a(I+8)3

v(v+2) De
where a - b2

and v is as defined in Table 3.3.

b. Three Dimensions (along the line y - z = 0)

v vVeff V 1+8 l+-

Dx + v2a Dx + v2

+eff x T+8 a(I+8)3 1+8 a(l+8)3

the effective parameters represent local equilibrium model equivalents,

Veff and Def f for the local equilibrium model are v and Dx, respectively.

The high Peclet number expressions for Veff and Deff for the first-order

rate and diffusion models, which are presented in Table 3.8a, are well

known in one dimension (Baker, 1977; De Smedt and Wierenga, 1984;

Valocchi, 1985a). The application to three dimensions is new. By

applying Eq. 3-31 to the moment formulae of Table 3.3, values for effec-

tive velocity and dispersion coefficients can be obtained at any point

in space, for a given model.

The effective velocity of the immobile region response (vneff) may

be obtained by applying

IVneff = - (3-32)
l,t
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to the immobile region moment formulae shown in Table 3.5. Again con-

sidering high Peclet numbers in the one-dimensional case, and along the

line y - z - 0 in the three-dimensional case, yields:

v (3-33a)
Vneff = (1+) + 0

v

for the first-order rate model, and

v (3-33b)
"neff - £(l+B) +

v a

for the diffusion models. Of course, the concept of an immobile region

solute distribution velocity is not applicable to the local equilibrium

model. As expected, the effective velocity in the immobile region is

less than that in the mobile region.

In a forthcoming section, the equations derived in this section

will be used to compare temporal and spatial behavior.

Behavior of Mobile and Immobile Spatial Distributions

The following relationships between the spatial moments and the

total mass associated with the mobile region (MT), the center of mobile

mass location (Xc, Yc, Zc) and the elements of the spatial covariance

tensor may be written (Freyberg, 1986):

Kr-em= ooo

xc a P 'c M PL W =c 0

100 001

02 2
10 200 c 0

(3-34)
U2y = '020

Gyy O2

x y x z zOO
2 =2 =2 =2 =2 = 2 - 0
°xy °yx °xz zx yz °z

As with the temporal moment discussion, effective velocity and disper-

sion coefficients may also be defined as:
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dx
Veff d - (3-35)

du o2 do2
DI xx do y I z
effx "Y -a- e Deify "y =t D effz T =t (3-36)

Thus, starting with the spatial moment relationships of Table 3.6, it is

possible to derive expressions for the effective velocity and dispersion

coefficients for the three models under consideration. In practice,

evaluating the effective velocity and dispersion coefficients for the

diffusion models requires the numerical evaluation of the derivatives in

(3-35) and (3-36).

Figure 3.4 shows how MT, Veff' and Deffx behave as a function of

time for each of the three model types. Model parameters for the exam-

ple were arbitrarily chosen, except that the first-order (a) and the

diffusion model (a) rate parameters were selected so that

a a a (3-37)

The use of this equality to obtain the first-order rate parameter will

be discussed further in the next chapter.

Figure 3.4a compares the total solute mass associated with the mo-

bile region (MT) versus time for each of the models. In the local equi-

librium model, the total mass is constant over time. The physical non-

equilibrium models show a loss of mass with time. Initially, all the

mass is associated with the mobile region. With time, more and more

solute diffuses into the immobile region, so that eventually, the mass

in the mobile region equals 1/(1+0) times the original mass. The dif-

ferences between the first-order rate and diffusion models do not appear

to be significant.

The behavior of veff shown in Figure 3.4b is similar to the total

mass behavior. The local equilibrium model predicts constant velocity

(Veff - v), whereas the physical nonequilibrium models predict a decel-

eration with time, going from Veff - v at t - 0 to Veff - v/(l+B) at

large times.

It is important to realize that the simulated decline in mass and

deceleration of the mobile region plume are due to the initial condi-

tion, which assumes no mass associated with the immobile region at t - 0.
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If this assumption is inappropriate, the mobile region plume mass and

velocity behavior would differ from the Figure 3.4 simulations. The

validity of this initial condition assumption, for a field experiment,

will be discussed in Chapter 5.

The behavior of Deffx with time is shown in Figure 3.4c. The

effective dispersion coefficient in the x-direction is constant for the

local equilibrium model (Deffx - D.), while the values of Deffx calcu-

lated using the physical nonequilibrium models increase from Deffx M Dx

at t - 0 to

Deffx - + . (3-38)a(l+B) 3

for the first-order rate model end

Vx v2

Deffx - T + (3-39)effx IT-0 a(1+8) 3

for the diffusion models, at large times.

Expressions similar to Eqs. 3-34 and 3-35 may be written relating

the total mass associated with the immobile region (NT), ae center of

immobile mass location (xnc, Ync, zn), and the effective velocity for

the immobile distribution (vneff), to the immobile region moments:

NT - emnmnooo

Xnc v Vio
-00 (3-40)Ync w vt 0 , n = V1 = 0

010 - nc 001

dxnc
Vneff = t

Figure 3.5a shows the total mobile and immobile masses over time

for the first-order rate model. Since total mass must be conserved, the

sum of the mobile and immobile masses remains constant.

Figure 3.5b plots the effective velocity of the solute plumes in the

mobile and immobile regions. The figure illustrates the deceleration of

the mobile solute distribution from veff - v at early times to Veff =

v/(l+B) at later times. The immobile solute distribution has an effec-

tive velocity (vneff) of v/2 initially. This initial value is a con-

sequence of the first-order rate expression, which controls the amount of
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solute entering and leaving the immobile region. At early times, there

is a large concentration gradient driving the solute into the immobile

region, but no gradient in the reverse direction, since the initial

immobile region concentration is assumed equal to 0. Since only times

very close to t - 0 are being considered, the concentration of the

mobile plume may be assumed approximately constant (i.e., very little

solute is transferred into the immobile region). Thus, based on the

first-order rate expression which controls the transfer of solute, the

(small) amount of solute which is transferred into the immobile region

between time t - 0 and t - at (as the mobile plume moves from x - 0 to

x - ax) is approximately the same as the (small) amount of solute which

is transferred betveen t - at and t - 2At (as the mobile plume moves

from x - ax to x - 2ax). Therefore, in the time it takes the mobile

plume to move a distance 2Ax, the center of mass of the immobile plume

moves from x - 0 (at t -0) to x - Ax (at t - 2at), leading to the

result, indicated in Figure 3.5b, that as t + 0, vnef f , v12. In a

mathematical analysis of two-layer flow incorporating first-order mass

transfer between the layers, Christodoulou (1986) obtained this same

result.

Eventually, at long times, the mobile and immobile region plumes

must move with the same velocity:

vef nf v (3-41)eff =vneff 1+a

Depending on the values of v and 8,the immobile region plume will

either accelerate or decelerate from its initial value of v/2 to attain

this final velocity. It should be noted that if

v a v (3-42)
I+8

(i.e., a - 1), the immobile region plume moves at a constant velocity
for all time. Figure 3.6 illustrates this behavior for the special case

of Eq. 3-42.

Figure 3.7 is the spherical diffusion model analog of Figure 3.5.

The total mobile and immobile solute masses of the diffusion model

(Figure 3.7a) qualitatively behave as did the masses simulated using

the first-order rate model in Figure 3.5a. The effective velocities of

the mobile and immobile region plumes (Figure 3.7b) also behave similarly,
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Figure 3.6. Comparison of the mobile and immobile region plume effec-
tive velocity behavior with time simulated by the first-

order rate model with 8 - 1.0.

except that the initial immobile plume velocity is 2v/3 in the case of

the diffusion model. This difference is due to the different model

structure describing solute transfer into and within the immobile

region. Again, at large times, both the mobile and immobile region

plumes attain an effective velocity of v/(l+0). If

2v v (3-43)
T- 1 W(

(i.e., 0 - 0.50), then the immobile plume center of mass moves at the

same velocity at short and long times. Figure 3.7b illustrates that for

0 - 0.50 the short- and long-time velocities are equal, while at inter-

mediate times the velocity-time relationship exhibits a shallow minimum.

This minimum is due to the mathematical formulation of the diffusion

model.
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Comparison of Temporal versus Spatial Behavior

The expressions for MT, veff, Deff, NT, and vneff derived in the

preceding sections provide a convenient tool for comparing the temporal

and spatial behavior of the concentration distributions. The three-

dimensional models can be assessed by comparing their spatial behavior

over the entire distribution with the temporal behavior along the line

y - z - 0. This is equivalent to comparing the result of sampling the

entire concentration distribution at points in time, with the break-

through responses obtained from sampling wells along the centerline of

the solute trajectory.

Zeroth moment

Mobile region. Examining the zeroth temporal moment of the mobile

distributions, it is seen that

MT  3_ (3-44)
4w ID D 

yz

whereas the zeroth spatial moment is model dependent. The zeroth spa-

tial moment for the local equilibrium model remains constant at

MT - MI (3-45)

while the zeroth spatial moments of the physical nonequilibrium models

decline from

MT - M3 (3-46)

at early times to

T "I-(3-47)

at later times.

Immobile region. For the physical nonequilibrium models, the tem-

poral Leroth moments are

BM;
NT - (3-48)

yz

while the spatial moments increase from
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NT - 0 (3-49)

at early times to

NT M (3-50)

at later times. Another significant difference is that the sum of the

mobile and immobile zeroth spatial moments remains constant over time,

whereas the sum of the temporal moments is inversely proportional to the

sampling distance, t.

First moment

Mobile region. Before comparing effective velocities, which are

derived from the spatial or temporal first moments of a distribution, it

is useful to recall the definition of the effective velocity (Veff).

The effective velocity is defined as the velocity parameter which would

be used in an equilibrium model to obtain the same spatial or temporal

first moment that would be calculated using an equivalent nonequilibrium

model. Effective velocity does not represent a physical quantity, and

as this section will emphasize, the effective velocity obtained from an

analysis of the spatial distribution is both quantitatively and qualita-

tively different from the effective velocity calculated from a temporal

moment analysis.

Comparing effective velocities, it is seen that for the physical

nonequilibrium models, the effective velocity obtained using the tem-

poral moments remains constant at

veff " 1" (3-51)

at all sampling distances, while the effective velocity obtained using

spatial moments declines from

Veff n v (3-52)

at early times to

veff - (3-53)

at later times. This difference can be understood qualitatively in the

following way: since the temporal first moment reflects behavior aver-

aged over all time, it provides an equilibrium value for the effective
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velocity, whereas the spatial first moment estimate provides a "snapshot"

of the instantaneous velocity with which the solute distribution is

moving, at particular points in time.

This difference in spatial and temporal behavior has interesting

repercussions in light of the concept of a retardation factor. The

basic premise for using retardation factors is that local equilibrium is

a valid assumption. Under equilibrium conditions, a retarded solute

will move through an aquifer at a speed equal to the speed with which a

conservative solute moves, divided by the retardation factor. The

retardation factor (R) may be determined by any of the following equa-

tions:

R- t'(retarded)
S(conservative) (3-54a)

Veff (conservative)

R = vef(os-evtv)(3-54b)
Veff (retarded) (

using either spatial or temporal definitions for veff, and

110 (conservative)
R= 00  (retarded) (3-54c)

For the local equilibrium model, all of the above equations will

yield identical values. However, if the assumption of local equilibrium

is invalid (physical nonequilibrium, for example), although the temporal

moments will yield the same retardation factor, independent of sampling

location, the spatial moments will yield different retardation factors,

depending on the time at which the spatial data were obtained. The

"nonequilibrium" retardation factors obtained from the spatial data will

be an increasing function of time, eventually approaching the equilib-

rium retardation factor value at long times.

Another consequence of the "equilibrium" behavior of the temporal

distribution first moment will now be discussed. Van Genuchten and

Wierenga (1976) showed that, for small values of a, the first-order rate

constant, a temporal breakthrough response could be simulated using a

local equilibrium model with

veff = v (3-55)
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and for large values of ai, the response could be simulated by a local

equilibrium model with

Vef V (3-56)

Goltz and Roberts (1986) presented similar results, and further defined

* small and large values of ai relative to an advective rate constant (v/0)

such that if a << v/1, Eq. 3-55 would apply, and if a >> v/f, Eq. 3-56

would apply. In chemical engineering research, the ratio of a mass

transfer rate (ai) to an advective rate (v/k) is defined as a Stanton

number (Cussler, 1984), where:

St avi (3-57)
TVFI

Thus, for St << 1, Eq. 3-55 would apply, and for St >> 1, Eq. 3-56 would

apply. The validity of (3-55) and (3-56) is illustrated in Figure 3.8a.

For the simulation at a low mass transfer rate, ai - 0.0003 d-1 and v/t

0.10 d-1 (St - 0.003). Thus, St << 1, and the local equilibrium model

4 with veff w v approximates the first-order rate response quite ade-

quately. For the simulation at a high mass transfer rate, a - 0.75 d-1

and v/X - 0.10 d-1 (St - 7.5). The local equilibrium model with

V
veff m +

approximates the first-order rate response. Interestingly, an examina-

tion of the temporal moments does not reveal this equivalence, as it was

found that the first temporal moments are independent of the mass trans-

fer rate. This is due to the existence of a very small, long tail in

the temporal response, which causes the first temporal moment to remain

constant even as ai + 0. Thus, in Figure 3.8a, the first-order rate

* model breakthrough responses for the high and low mass transfer rates

have the same first moment, contrary to the visual impression given by

the figure. Figure 3.8b, which depicts the tailing of the high and low

mass transfer rate simulations, indicates how the long tail of the low

rate simulation could cause the two simulations shown in Figure 3.8a to

have the same first moment. Although mathematically real, the tail

which leads to this equality may be below detection limits (visual and

analytical), and it is reasonable to approximate the first-order model

response at small ai using the local equilibrium model with veff as

defined in Eq. 3-55. The equations for the first spatial moment provide
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a mathematical justification for this approximation. Differentiate the

first spatial moment expression in Table 3.6 to find

d100 v(l + 82A) + v$A(2 + at - atB) (3-58)
Veff - dt = (I + 0)(l + -A) (1 +3-A 2

where

The synoptic sampling time, t, in Eq. 3-58 may be replaced by the term

X/v, to obtain

2 vSA(2 +

_ _v(1 + 2A) + v v (3-59)Veff = (1 + 0)(1 + A)(1 + BA)

where

A - e(-a /v)(l+B)

From Eq. 3-59, it is seen that indeed for a << v/t (St << 1)

A + 1 and Veff + v

whereas for a >> v/k (St >> 1)

A+0 and Veff i-

These approximations could not be obtained by an examination of the

first temporal moment.

Immobile region. The effective velocity of the immobile solute

distributions based on temporal moments behaves in accordance with

Eq. 3-33. At small distances (I << v/[a(l+S)] or Z << v/[a(l+S)]),

Vneff a al or Vneff = a' (3-60)

while at large distances, Vneff changes (it either increases or de-

creases, depending on parameter values) to

v v (3-61)Vneff n --+B)

As discussed above, the effective velocity of the immobile region

plume calculated from the spatial moments changes from the small time

value of
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Vneff - V (3-62)

for the first-order rate model, and

Vneff - 2v (3-63)

for the diffusion models, to the large time value of

Vnff - (3-64)

Second moment

The value of Deff calculated from the temporal moments remains con-

stant over the sampling distance, with values of

Deff - Dx  (3-65)

for the local equilibrium model and

D 2
Deff " + x +  a(1 + )3 (3-66)

D 2D~x + v2

Deff "I + x e +a(l + 8)3

for the physical nonequilibrium models.

For the physical nonequilibrium models, the effective dispersion

coefficient calculated from the spatial moments increases from

Deffx - Dx  (3-67)

at small times, to

Dx  v 2

effx I + o + (l + 0)3 (3-68)

Dx  v 2
Deffx + B a(l + 8)3

at large times. Deffx for the local equilibrium models remains constant

at Deffx - Dx .

Notice that all the large time parameter values obtained using the

first and second spatial moments are equivalent to the values obtained

using the temporal moments.
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Table 3.9 summarizes the parameter values obtained at small and

large values of sampling distance and time, based on the temporal and

spatial moments respectively.

SUMMARY

One- and three-dimensional forms of Aris' method of moments were

developed and used to analyze the temporal and spatial moment behavior

of concentration distributions obtained using both equilibrium and

physical nonequilibrium solute transport models.

It was shown that although the zeroth and first temporal moments

are independent of the rate of mass transfer between the mobile and

immobile regions, all the spatial moments are dependent on the mass

transfer rate. One implication of this is that the retardation factors

calculated from breakthrough responses should, at least mathematically,

be independent of the distance to the sampling well and the rate of mass

transfer. On the other hand, the retardation factors calculated from

spatial data can be expected to increase with time under conditions of

physical nonequilibrium, with the rate of increase a function of the

mass transfer rate.

The temporal and spatial moment behavior of the solute within the

immobile region was also examined. It was demonstrated that the zeroth

spatial moment increases from zero, indicating no solute mass within the

immobile region at t - 0, to a constant value at long time. The effec-

tive velocity of the immobile region plume, calculated from the spatial

moment, changes (it may increase or decrease) from a fraction of the

initial mobile plume velocity at t - 0, to a constant value at long

times, with the large-time value equal to the large-time value of the

mobile plume velocity.

Finally, it was shown that for infinite boundary conditions, the

first temporal moment simulated using a one-dimensional model would be

greater than the first temporal moment using a three-dimensional model

with the same velocity, owing to the effect of one-dimensional versus

three-dimensional dispersion.

52



U3 41 ca.0

IL -4 4

.4 ad

b3 1 414
N. 0. +0.

-4 am4 41 44~. S. CID0 C -

0 .3 0 14

F-4 P -

.0 -0

41a

41

.41 > 1-

1-4 410
1414I.

F-141 441

-4

1-4 - 4
a4 14 44

11'a .00 41

r-J ow
~ ~ ~I + 53



CHAPTER 4

MODEL COMPARISONS

In the preceding chapter, the spatial and temporal moments obtained

using different transport models were compared. These moment formula-

tions will now be used to define equivalent parameters for the different

transport models, and to examine the similarities and differences of

breakthrough responses (which typically would be measured in a field

situation) simulated using these equivalent parameters. In contrast to

earlier studies, which concentrated on equivalence among one-dimensional

models, this work will deal with the three-dimensional models discussed

in the previous chapters. The reason for this analysis of model equiva-

lence is to determine if differentiation among different models, based

on breakthrough data, is feasible. A related question, which will also

be addressed in this chapter, concerns the differences in breakthrough

responses owing to different assumptions regarding boundary conditions.

MODEL EQUIVALENCE

The concept of equivalence between local equilibrium and physical

nonequilibrium models has been discussed in the literature. Baker

(1977), De Smedt and Wierenga (1984), and Valocchi (1985a) showed that

in one dimension, for Pem W vX/Dx > 1000, the first-order rate model

could be approximated by a local equilibrium model, with an effective
dispersion coefficient of:

Deff " 1 2  (4-1)a(l +8)3

Rao et al. (1980), and Valocchi (1985a) showed for diffusion into

spheres, and Passioura (1971) showed for diffusion into cylinders as

well as into spheres, that at large Pem the diffusion models could be

approximated by a local equilibrium model with an effective dispersion

coefficient of:

DD x  ov 2 (42Deff ----- + (4-2)
a(l + 8)

In the subsequent discussion, it will be shown that Eq. 4-2 can be used

to approximate diffusion into layers also. Valocchi (1985a) showed that
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an effective velocity for a local equilibrium model equivalent to the

physical nonequilibrium models is:

veff= v (4-3)

Equations 4-1 through 4-3 may also be obtained using the concept of

temporal moment equivalence. From Table 3.2 of the previous chapter, it

is seen that the effective parameter values expressed in Eqs. 4-1 through

4-3 are the same as the parameter values obtained by considering the

breakthrough responses of the one-dimensional models at high Peclet

numbers, and by setting the first and second temporal moments of the

equilibrium and nonequilibrium models equal to each other. Inspecting

the first moment expressions in Table 3.2, it is seen that at high

Peclet numbers, Eq. 4-3 can be used in equating an equilibrium model

effective velocity to all of the physical nonequilibrium models, regard-

less of whether a geometrical diffusion or first-order rate model is

formulated.

Comparing the second moment expressions in Table 3.2, and setting

the equilibrium and diffusion model expressions equal to each other, at

high Peclet numbers, shows Eq. 4-2 applicable to spherical, cylindrical,

and layered diffusion models. In the same way, Eq. 4-1 is obtained by

setting the equilibrium model expression for the second temporal moment

equal to the first-order rate model expression for the same moment. To

define equivalence between first-order rate and diffusion model parame-

ters, it is necessary merely to set the second temporal moment formula-

tions of the two models, shown in Table 3.2, equal to each other, to

find:

a a a (4-4)

Note that the validity of Eq. 4-4 does not depend on the Peclet number.

Parker and Valocchi (1986) used the moment analysis approach de-

scribed above to define equivalent equilibrium, first-order rate, and

spherical diffusion model parameters. Here, their analysis is extended

to include cylindrical and layered diffusion models.

Van Genuchten (1985) used an empirical method to obtain shape

factors which could be used to define equivalent rate constants for the

various physical nonequilibrium models. Similar factors can be obtained

using Eq. 4-4. Table 4.1 compares equivalent rate constants obtained using
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TABLE 4.1

EQUIVALENT RATE CONSTANTS FOR NONEQUILIBRIUM MODELS

Diffusion Models
First-Order
Rate Model Spherical Cylindrical Layered

22.7 D e 11 D 3.5 De
Empirical* a 2 b2 b2

Moment Analysis 15 De 8 De 3 De
(Eq. 4-4) b2  b2

Van Genuchten (1985).

van Genuchten's (1985) empirical formulae with rate constants derived

using the moment analysis described above.

Van Genuchten (1985) and Parker and Valocchi (1986) provide compar-

isons of the one-dimensional breakthrough responses of the equilibrium

and nonequilibrium models. In this work, it is shown that their find-

ings are also applicable in three dimensions.

With regard to the physical nonequilibrium models, Parker and

Valocchi (1986) considered only the first-order rate and spherical dif-

fusion models. However, as was shown by van Genuchten (1985) and is

apparent from Figure 3.4c, these two model types bracket the range of

behavior of the other geometrical diffusion models. Therefore, the fol-

lowing three-dimensional analysis will follow Parker and Valocchi (1986)

and be limited to discussing the first-order rate and spherical diffu-

sion models. Parker and Valocchi (1986) also found that the deviations

between models are greater for an instantaneous source than for continu-

ous or pulse injections. Hence, the following discussion will focus on

the breakthrough responses to an instantaneous point source.

The instantaneous point source analysis which will be discussed in

this work is applicable to sampling wells far from a finite source, in

the line of advective transport. Parameter values used for the analysis

are listed in Table 4.2. The parameter y is a measure of the ratio of

diffusive to advective rate constants. For the first-order rate model:

Y

(vl7 (4-5)
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TABLE 4.2

PARAMETER VALUES USED IN FIGURES 4.1 THROUGH 4.3

y 8 R Peel f  Pe.

Figure 4.1 30.0 1 1 27.3 50
0.3 1 1 0.593 50

Figure 4.2 0.3 1 1 0.593 50
0.3 0.0526 1 18.3 50

Figure 4.3 0.3 1 1 0.593 50
0.3 1 50 18.7 50

and for the diffusion models:

a 1 (4-6)

Note that in the case of the first-order rate model (Eq. 4-5), y is equiv-

alent to the Stanton number defined in Chapter 3. In the case of the

diffusion models (Eq. 4-6), y is the ratio of a diffusion rate to an ad-

vection rate. This ratio has been defined as an intra-aggregate diffusion
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Figure 4.1. Effect of y on simulated breakthrough responses of the
equilibrium, first-order rate, and spherical diffusion
models.
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Figure 4.2. Effect of 8 on simulated breakthrough responses of the
equilibrium, first-order rate, and spherical diffusion
models.

0.15-

0.14- 0 Equilibrium model

0.13 -+ First-order rote model

z 0.12 - Spherical diffusion model
0

I- 0.1zw
o 0.09
z
o 0.08 R1.

0.07-

-j 0.06-z
0 0.05-
z
wj 0.04-

0 0.03-

0.02-k:

0.01 -0

0-
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

NORMALIZED TIME
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models.
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modulus (Crittenden et al., 1986). Nonequilibrium model parameters were

chosen to provide a range of behavior. The equivalent equilibrium model

parameter values were calculated using Eqs. 4-1 through 4-3. The equiv-

alent equilibrium model parameter values are contained in the effective

Peclet number, Peff m veffI/Deff"

Both van Genuchten (1985) and Parker and Valocchi (1986) found that

for large values of y, the ratio of the diffusive rate constant to the

advective rate constant (i.e., approach to equilibrium), the simulations

of the local equilibrium, first-order rate, and diffusion models con-

verged upon each other. Figure 4.1, which plots normalized concentration

versus normalized time (T), where

mVmt Vot -

m m 0(4-7)

demonstrates this for a three-dimensional simulation. For high values

of y, the equilibrium and nonequilibrium models produce similar break-

through reponses, whereas for low values of y, the equilibrium and non-

equilibrium responses diverge.

Figure 4.2 shows the effect of B, the solute capacity ratio of

immobile to mobile regions, upon simulated breakthrough responses. As B

approaches zero (i.e., where very little solute is associated with the

immobile region), the nonequilibrium responses approach the equilibrium

responses. For higher values of 0, which implies more solute associated

with the immobile region, the deviation from equilibrium increases.

Parker and Valocchi (1986) showed a similar effect in one dimension.

The effect of increasing the retardation factor, R, upon the simu-

lated responses is shown in Figure 4.3. As can be seen, increasing R

decreases the deviation from equilibrium.

Figures 4.1 through 4.3 show that for certain parameter values,

even if Pea < 1000, Eqs. 4-1 through 4-3 are applicable. This was also

shown by Parker and Valocchi (1986). The figures also indicate that for

other parameter values, the differences between the geometrical diffu-

sion models and the equivalent first-order rate model may be significant.

This observation was also made, for one-dimensional formulations, by van

Genuchten (1985) and Parker and Valocchi (1986). Van Genuchten (1985)

noted, however, that considering the uncertainty in the many parameters

needed in the two-region models, the first-order rate model acceptably
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approximated the responses of the more complex diffusion models. In the

above analysis, the differences in model responses were maximized by

choosing an instantaneous point source and comparing the two most dis-

similar models. Nevertheless, the differences between the responses

were not very great. This observation supports van Genuchten's (1985)

conclusion that, owing to parameter uncertainty, attempts to differen-

tiate between the two types of models based on field data would be

difficult.

Figure 4.4 offers further evidence in support of this conclusion.

As Figures 4.1 through 4.3 showed, for certain parameter values, the

differences between the first-order rate and spherical diffusion models

could be significant. However, with relatively minor changes in the

first-order rate model parameter values, the responses of the two models

can be made to be almost identical. In Figure 4.4, v and Dx were

changed by 10% from the Figure 4.1 through 4.3 values, and the first-

order rate constant, a, was calculated using van Genuchten's (1985)

empirical formula (see Table 4.1) instead of using Eq. 4-4. As the

figure shows, the responses of the two models are quite similar.
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Figure 4.4. Comparison of simulated breakthrough responses of the
first-order rate and spherical diffusion models.
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Parker and Valocchi (1986) showed that for certain parameter

values, it is possible for a local equilibrium model simulation to

deviate even less than a first-order rate model from a diffusion model

simulated breakthrough response. Thus, the likelihood of successfully

differentiating among the three types of models based on field break-

through response data appears to be small.

Recall, however, from the discussion in the previous chapter that

there is a qualitative difference between the spatial moment predictions

of the equilibrium and nonequilibrium models. Thus, from spatial data,

it may be possible to differentiate between equilibrium and nonequilib-

rium models, although as can be seen from Figure 3.4, differentiating

between the different nonequilibrium model formulations remains diffi-

cult.

INFINITE AND SEMI-INFINITE BOUNDARY CONDITIONS

To examine the effect of infinite versus semi-infinite boundary

conditions on the breakthrough responses, one-dimensional breakthrough

simulations of semi-infinite and infinite versions of the first-order

rate and spherical diffusion models will be compared in this section.

Lindstrom and Narasimhan (1973) derived the first-order rate model

solution for an initially distributed solute slug in a one-dimensional

semi-infinite medium. The analogous solution, for the following initial

and boundary conditions corresponding to an infinitesimal point source:

(-Dx L! + v Cm)x. 0 = 0 (4-8a)
axaxm m

m 0 (4-8b)

ax IxG

Cm(xo) - m1m (x) (4-8c)

Cim(X,O) - 0 (4-8d)

is:
at

Cm(Xt) - exp[- cc-j]G(xt) + j f H(t,r)G(x,r)dT (4-9)
mm mmO
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where:

H' (Rmx - vmt)
2

G~~)- 1t ]
G~xt)112 expl 4D R tem(wDmxRmt) mx m

vM vx Rx+vt
m2 exp(D--m') erfc[ m m ]

2 mDmx m mx 2(D xRmt)

and H(t,r) is as defined in Eq. 2-8.

Using Appendix A, the one-dimensional version of Eq. 2-8 may be

written

C (xt) - exp[- .'! ]G(xt) + o f H(t,)G(x,)dT (4-10)
- mRm mm0

where

MI, (R mx - V mt02
_=172 exp[- 4D

2m( rDmx Rmt) mx m

Equation 4-10 represents the response to an instantaneous point source

in a one-dimensional infinite medium.

Wakao and Kaguei (1982) examined the differences in using either

semi-infinite or infinite boundary conditions in a model which included

both advective/dispersive transport and diffusion into zones of immobile

water. They found that deviations between the two solutions were depen-

dent on the dimensionless group, Pem - (vmt/Dmx). Figure 4.5 shows

dimensionless concentration versus time solutions of the first-order

rate model in both a semi-infinite (4-9) and an infinite (4-10) medium,

for various values of Pem. For low values of Pem, differences between

the two solutions become significant. At low values of Pem, the disper-

sive term in the advection/dispersion equation is large enough to cause

differences between the semi-infinite solution, which does not allow for

dispersive solute flux into the region x < 0, and the infinite solution,

which does permit upgradient dispersion. As expected, Figure 4.5 shows

that at low values of Pem, the infinite solution exhibits more spreading

than does the semi-infinite solution. At high values of Pem, however

(i.e., Pe > 50), the differences between the semi-infinite and infinite

solutions are insignificant.
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The solution of the spherical diffusion model in a one-dimensional

semi-infinite medium is found by a straightforward application of the

methods of Rasmuson and Neretnieks (1980) and van Genuchten et al.

(1984). The solution, for an instantaneous point source, is:

4MjDeexp(V0X/2Dx) /exp - R 12

Go 2
4,Dexp xrbD 1/2_

(C- z)~t ms om - x) xZ)

1/2 2 1/2

where Z and Zm are defined in Eq. 2-12.

p
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Using the methods of Appendix B, the one-dimensional version of

Eq. 2-12 may be written:

2MID exp(vm x/2D )
C M(x,t) 2 m /mm ~ m~2 1Dx~ /2

e mR im b D xRm)

. R , 1/2

00Ip - xIzp 2 1/2
x P[ D) 2][ 2t R ! xZ

2D' 2 t R 1/2
+ ~ Z(R\ _ XZ XdX(-2
m b2  Q d) (4-12)

where, again, Z p and Zm are defined in Eq. 2-12. Equation 4-12

represents the response to an instantaneous point source in a one-

dimensional infinite medium.

Figure 4.6 compares dimensionless concentration versus time

solutions of the spherical diffusion model in both a semi-infinite

(4-11) and an infinite (4-12) medium, for various values of Pem. The

results are quite similar to the results obtained using the first-order

rate model. At high values of Pem, the difference between the semi-

infinite and infinite solutions decreases.

CONCLUSIONS

In this chapter, the equivalence between the local equilibrium,

first-order rate, and geometrical diffusion models was evaluated. It was

shown that the equivalence relationships derived using one-dimensional

model formulations of the various models are also applicable in three

dimensions, and that breakthrough responses simulated using the one- and

three-dimensional models show a similar dependence on input parameter

values.

Use of field breakthrough (temporal) data to differentiate between

the three types of models does not seem feasible, though spatial moment

data may be useful in differentiating between the equilibrium and non-

equilibrium model formulations.
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It was also demonstrated that the solutions for semi-infinite and

infinite boundary conditions are similar at large values of the Peclet

number. This is convenient, since the infinite solution is simpler and

obtained in a more straightforward manner than the semi-infinite solu-

tion.
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CHAPTER 5

APPLICATION TO THE INTERPRETATION OF DATA FROM A

LARGE-SCALE TRANSPORT EXPERIMENT UNDER NATURAL CONDITIONS

The discussion thus far has concentrated on the development and

analysis of three-dimensional physical nonequilibrium models. In this

chapter, spatial and temporal data obtained from a large-scale transport

experiment will be interpreted using such models. The physical nonequi-

librium models, with parameters obtained from direct measurement, liter-

ature correlations, and laboratory experiments, will be used in an

attempt to simulate the spatial and temporal behavior of the solute

distributions which were observed over the course of the experiment. In

addition, the complementarity of the results from spatial and temporal

sampling will be assessed in two ways. First, a direct comparison will

be made of spatial and temporal results obtained at comparable time/dis-

tance scales. Second, equilibrium and physical nonequilibrium model

parameters obtained from spatial sampling will be used to simulate

temporal response data. Finally, a brief review will be made of various

alternative models which may be used in interpreting the field results.

This review will include an examination of the spatial moment behavior

predicted by some of the alternative models, a subject that previously

has not been evaluated systematically.

PROJECT BACKGROUND

A large-scale, long-term field experiment to study natural gradient

transport of solutes in groundwater was conducted by a group of investi-

gators from Stanford University and the University of Waterloo, at a

site in Borden, Ontario (Mackay et al., 1986; Freyberg, 1986; Roberts et

al., 1986). Well-defined initial conditions were achieved by injecting

approximately 12 m3 of a solution containing known masses of two inor--

ganic tracers (chloride and bromide) and five halogenated organic

compounds (bromoform, carbon tetrachloride, tetrachloroethylene, 1,2-

dichlorobenzene, and hexachloroethane). The transport of the organic

solutes was monitored over a two-year period with a dense, three-

dimensional array of more than 4000 sampling points. Figure 5.1 depicts

the sampling network.

66



'~~~~0 '1 GO t7 Ir ''I. .

A"

100-

so

4.. 4 4 4 4

40 
-

2 0 . . . *

+o-++. *Multilevel SoMlers

::: ..: • ijcto n W ells
0o t,': i No Time Series Monitoring Points

0 20 40 so e0

Y (M)

0oAA

-2 .' .' : : . . ...... . . .. • . o

2 !

. .. .. 4.. .. . . . "

0 20 ""

D4s4nce e

Figure 5.1. Locations of multilevel sampling and injection els as of

anuary 1986: a) Plan vie, and b) Approximate vertical

distribution of sampling points ()projected onto cross

section AAI (vertical exaggeration =4.6).

67

4.. 4 4 4 4..



Two types of sampling were conducted. Spatial data were obtained

from synoptic or "snapshot" sampling sessions, each of which measuredI the three-dimensional spatial distribution of solute concentration at a
particular point in time. Temporal data were obtained by measuring the
solute concentration at a relatively high sampling frequency (i.e.,

daily in the early stages, biweekly or weekly later on) at a few pre-

selected sampling points. Tables 5.1 and 5.2 summarize the synoptic and

time series monitoring programs. Details of the experimental design and

implementation may be found in Mackay et al. (1986).

The aquifer in which the experiment was conducted is unconfined,

consisting of horizontally bedded fine- to medium-grained sand (Sudickyp et al., 1983). The hydrogeology and geochemistry of the study area have

been described by MacFarlane et al. (1983) and Dance (1980).

TABLE 5.1

SUMMARY OF SYNOPTIC MONITORING PROGRAM

Date Days Since Solutes Number of Samples
Injection Tracers Organics Analyzed

08/ 24/82 1 X X 392
09/01/82 9 X X 419
09/08/82 16 X X 408
09/21-22/82 29 X X 629
10/05-06/82 43 X X 671

10/25-26/ 82 63 K X 700

11/16-17/82 85 X X 712
05/09-11/83 259 X 1219

06/22/83 303 K 233
07/19-20/83 330 X 1150

07/21/83 332 X 362
09/07-08/83 380 X 839
09/08-09/83 381 x 496

10/04/83 407 X 949
10/26-28/83 429 x 1883
11/28/83 462 X 1343
05/17/84 633 x 1122
05/31-06/02/84 647 K 958

08/01-02/84 709 X 1119

06/26-28/85 1038 X 1205
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TABLE 5.2

SUMMARY OF TIME SERIES MONITORING PROGRAM

Sample Point (x,yz) Number of Samples
(m) Duration Collected as of 1/1/86

Near- 2.5, 0.0, -3.20 Aug. 82 - Dec. 83 188
Feld 2.5, 1.25, -3.62 Aug. 82 - Dec. 83 188

5.0, 0.0, -3.26 Aug. 82 - Dec. 83 183

10.0, 4.6, -3.88 Nov. 83 - Jun. 85 45
Mid- 10.0, 4.6, -4.48 Nov. 83 - Jun. 85 27

Field 13.1, 4.05, -3.42 Jul. 84 - Jun. 85 32
13.1, 4.05, -3.72 Jul. 84 - Jun. 85 31

18.0, 9.0, -4.13 Mar. 83 - Jun. 85 119
Far- 18.0, 9.0, -4.73 Mar. 83 - Jun. 85 121

Field 21.0, 9.0, -4.17 Mar. 83 - Jun. 85 117
21.0, 9.0, -4.77 Mar. 83 - Jun. 85 117
24.0, 9.0, -4.76 Mar. 83 - Nov. 83 78

Time Series Data

Concentration responses at each of the twelve high frequency sampl-

ing points are shown in Appendix E. Chloride data are not depicted, in

the interest of clarity, since the chloride and bromide observations are

nearly indistinguishable (Freyberg, 1986). For the purpose of this

study, 1,2-dichlorobenzene and hexachloroethane data have also been

omitted. As discussed in Roberts et al. (1986), both of these compounds

behaved anomalously. Hexachloroethane concentrations declined to non-

quantifiable levels by the end of the first three months of the experi-

ment, and the concentration of 1,2-dichlorobenzene declined precipitously

at one of the three near-field sampling wells and was never found in

significant levels thereafter. Significant concentration levels of

1,2-dichlorobenzene were not seen at either of the other two near-field

wells. A full discussion of the near-field, early-time behavior of

these two compounds may be found in Roberts et al. (1986). This study

will focus on those compounds that remained at significant concentration

levels after the first three months of monitoring.

Appendix E also shows that of the four solutes being considered,

every solute is not seen at every sampling point. The four mid-field

wells were sampled specifically for tetrachloroethylene. Bromide and

the two faster moving organics, carbon tetrachloride and bromoform, had

largely passed by these wells before sampling commenced. At the five
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far-field wells, tetrachloroethylene had yet to arrive upon conclusion

of the experiment. At the most distant well, only bromide was seen,

since sampling at this well was terminated prior to the arrival of the

organic solutes.

Synoptic Data

Freyberg (1986) described how the synoptic concentration data were

used to obtain estimates of the spatial moments of the solute plume dis-

tributions. Freyberg (1986) and Roberts et al. (1986) present estimates

of the zeroth and first moments for the inorganic and organic plumes,

respectively. Freyberg (1986) also presents estimates of the second

moment for the inorganic plumes. Following his methods, the organic

plumes' second moment estimates were calculated as well (Freyberg,

1985). In this work, estimates of the second moment are presented as
2 and y, the principal values of the spatial covariance tensor.

Freyberg (1986) noted that the vertical components of the spatial

covariance tensor could not be distinguished from sampling noise, and

that the vertical thickness of the tracer plumes remained essentially

constant over the course of the experiment. Therefore, the principal

vertical component of the covariance tensor, azz , has not been consid-

ered and will be assumed to be negligible.

Comparison of Time Series and Synoptic Results

Roberts et al. (1986) demonstrated that the results of time series

sampling of the near-field wells (x < 5 m) were qualitatively consistent

with synoptic sampling results. In this section, far-field (x > 15 m)

time series sampling results for bromoform and carbon tetrachloride are

presented, and compared with synoptic sampling results, to further

demonstrate the complementarity of spatial and temporal transport behav-

ior. The comparison is made in terms of the retardation factor, which

is calculated using temporal or spatial first moment estimates, and the

relative mass ratio, which is obtained from temporal or spatial zeroth

moment estimates. The following definitions are used:

1. Retardation factors are defined by Eqs. 3-55a and 3-55c,

based on temporal and spatial first moment estimates,

respectively.
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2. Relative mass is def ined as the total solute mass calcu-

lated from the temporal or spatial zeroth moment estimate,

normalized by the total solute mass initially injected

into the aquifer. The relative mass ratio is the rela-

tive mass of a retarded solute divided by the relative

mass of the conservative tracer. The relative mass cal-

culated from the temporal zeroth moment is proportional

to the area under the breakthrough response curve. The

relative mass calculated from the spatial zeroti moment

is proportional to the product of the zeroth moment and

the retardation factor. As noted above, for this analy-

sis, the retardation factor at a particular synoptic

sampling time is obtained from Eq. 3-55c. The reason the

mass calculated from the spatial moment is proportional

to the retardation factor while the mass calculated from

the temporal moment is not, goes back to the discussion

in Chapter 3. When determining the spatial moment at an

instant in time, only the aqueous solute concentration is

measured. The sorbed solute must be accounted for, in

this instance, by use of the retardation factor. On the

other hand, when determining the temporal zeroth moment,

all the solute passing by a particular sampling point is

accounted for in the breakthrough response curve.

In order to graphically compare spatial and temporal behavior, it

is useful to plot the two types of results on the same scale. Spatial

data are obtained at particular sampling times. The sampling distances

at which temporal data are obtained may be converted to equivalent time

values. For this analysis, the first moment of the breakthrough re-

sponse curve of the solute of interest at a sampling point is defined as

the equivalent time for that point.

Figures 5.2 and 5.3 depict the relative mass ratios and the retar-

dation factors for bromoform and carbon tetrachloride calculated from

temporal and spatial moment estimates. For bromoform, the decrease in

mass and the Increase in the retardation factor which was found by an

examination of the spatial data (Roberts et al., 1986) is also clearly

seen by comparing near- and far-field temporal results. The obviuus

disappearance of bromoform (Figure 5.2) was attributed to transformation
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by Roberts et al. (1986). More variability is evident in the calcula-

tions of the relative mass for carbon tetrachloride, though again, the

increase in the retardation factor over the course of the experiment is

evident. The variability of the relative mass ratios obtained from the

temporal data may reflect local variations in aquifer properties along

the flow paths to the individual sampling points (Roberts et al., 1986).

Nevertheless, there is good general agreement between the results of the

spatial and temporal analyses.

MODEL APPLICATION

One goal of modeling is to predict real behavior using indepen-

dently obtained parameter values. In this section, an attempt is made

to predict zeroth and first spatial moment behavior using first-order

rate model parameters equivalent to the spherical and layered diffusion

model parameters. Model parameter values are estimated based on direct

measurement, literature correlations, and soil adsorption isotherms

measured in the laboratory.

Spherical Diffusion Model

Based on the approximately spherical shape of the aquifer material,

it is reasonable to assume solute diffusion into spherical grains may be

influencing transport. Table 5.3 lists parameter values for use in a

spherical diffusion model. The parameters in Table 5.3 were obtained

independently of the experimental data. The mass of each solute ini-

tially injected into the aquifer (Mi) was known (Mackay et al., 1986).

Values for bulk density (p), and total porosity (e) were obtained by

direct measurement (Mackay et al., 1986) as was the range of median

grain sizes (b) (O'Hannesin, 1981). The value for the pore water

velocity (vo ) was based on estimates of hydraulic conductivity and

hydraulic gradient (Mackay et al., 1986). The ratio of mobile to total

water content (*) was calculated using the following expression:

(1 - a) (5-1)

where ca is the intragranular porosity. Intragranular porosity was

measured by mercury porosimetry (Demond, 1984). The distribution coeffi-

cients (Kd ) for the various organic compounds and Borden aquifer material
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TABLE 5.3

PARAMETER VALUES FOR USE IN A SPHERICAL DIFFUSION MODEL

Bulk soil density (p) 1.81 g/cm 3

Total porosity (e) 0.33

Intraparticle porosity (ca) 0.01
Ratio of mobile to total water content ( ) 0.979

Pore water velocity (vo) 0.079 m/d
Fraction of "mobile" sorption sites (f) 0.0

Median grain radius (b) 0.035-0.35 mm

Carbon Tetra-

Bromo- Tetra- chloro-
Bromide form chloride ethylene

Distribution coeff.

(K cm3/g 0.0 0.17 0.17 0.48(d), c

Mass of injected
solute (M), g 3,870 0.38 0.37 0.36

Liquid diffusion 4
coeff. (DO), m2/d 1.74x10 7.17xl0- 5  7.34xi0 - 5  6.83x10- 5

Effective intraparticle
diffusion coeff.(D'). m2/d 1.74x0 - 6  7.17×1- 7  7.34x0 - 7  6.8340-7

Equivalent first-order
rate constant (a'),
d- 1  1.44-144 0.594-59.4 0.608-60.8 0.566-56.6

were measured by Curtis et al. (1986) in a series of batch sorption ex-

periments. Bromide, the inorganic tracer, is assumed to be nonsorbing.

The liquid diffusion coefficients (DO ) for the organic compounds were

estimated using the Wilke and Chang (1955) correlation. The liquid

diffusion coefficient for bromide was calculated using a method de-

scribed by Cussler (1984) for estimating the diffusion coefficient of

electrolytes. Since intraparticle diffusion is likely to be hindered by

the interaction of the solute and the sorbent grain, the effective

intraparticle diffusion coefficient (DI) is some fraction of the liquid

diffusion coefficient. Defining tortuosity (X) such that:

DO

1D - (5-2)
e X

Wakao and Smith (1962) proposed:

I
X C

a
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Given the measured value of ea of 0.01, X 100. Equation 5-2 was used

to calculate the effective intraparticle diffusion coefficients for the

compounds being considered. Finally, a value for f, the fraction of

sorption sites adjacent to regions of mobile water is required for model

input. Nkedi-Kizza et al. (1982) assumed that for an aggregated soil,

virtually all the sorption occurs within the aggregate, so that there

are no sorption sites in direct contact with mobile water. Following

Nkedi-Kizza et al. (1982), it will be assumed that sorption occurs
either within the aquifer material grains or within aggregates, so that

f - 0.0 for this model.

It is now possible to apply the moment analysis formulae of Table

4.1 to obtain first-order rate constants (a') equivalent to the spheri-

cal diffusion rates which can be calculated using the values of De, b,

*, and e in Table 5.3. This conversion to a first-order rate model is

chosen because of the convenience and computational efficiency of the

first-order rate model as compared to the diffusion models. In Chap-

* ter 4, it was shown that simulations obtained from each of the two model

types are quite similar, and probably indistinguishable considering the

accuracy of the experimental data and the accuracy with which the input

parameters are estimated. The range in values for a' is due to the

range in median grain sizes.

Before using the parameter values estimated above in the first-

order rate model, and comparing simulations with experimental data, it

is useful to discuss the relevance of the boundary and initial condi-

tions assumed in the model to the experimental conditions. The assump-

tion of infinite boundary conditions weould seem applicable in describing

the experimental conditions at Borden, in which the medium is unbounded

upgradient from the point of introduction, as well as downgradient from

the observation points. In any event, as was discussed in Chapter 4,

except for observation points close to the point of solute introduction,

the impact of boundary conditions on model predictions is small.

As was noted in Chapter 3, the assumption that no mass is initially

associated with the immobile region has a large effect on the mobile

region plume mass and velocity behavior. A related assumption is that

water which is obtained from the sampling wells is mobile water. The

former assumption implies, and the latter states, that water which is

injected into the aquifer by the injection system, or withdrawn from the
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aquifer by the sampling system, is mobile water. Conceptually, these

assumptions seem reasonable. If it is assumed that regions of immobile

water do indeed exist in the Borden aquifer (within dead-end pores or

* zones of low permeability, for example), it follows that during injec-

tion or extraction, mobile water will be preferentially displaced. In

light of this preferential displacement, the initial condition assump-

tion and the assumption regarding the sampling water appear reasonable.

Therefore, in the following discussion, the moments calculated from the

spatial data will be assumed to be mobile region plume moments.

Figures 5.4 through 5.7 compare the mass in solution and first

spatial moments of the four mobile region solute plumes (Freyberg, 1986;

Roberts et al., 1986) with the moments simulated using the first-order

rate model. The Table 5.3 parameter values were used in the model.

Also shown in Figures 5.4 through 5.7 are the moments simulated using

the local equilibrium model. The local equilibrium model simulations

use the values of vo, m5, p, e, and Kd from Table 5.3, and implicitly

assume * - f= 1 (i.e., all water is mobile water). As these figures

show, the local equilibrium model and the physical nonequilibrium model

produce virtually identical results for the parameters used. These

results indicate that, based on the assumed diffusion coefficients and

grain sizes, for the time scale considered, local equilibrium is a valid

assumption. In particular, notice that varying the first-order rate

constant over two orders of magnitude has no effect on the results. The

reason for this insensitivity to the rate constant is that even for the

minimum value of the rate constant, local equilibrium is valid. There-

fore, increasing the rate constant has no effect on the %imulations.

Note, though, that the qualitative fit of the models to the data is

poor. The mass loss and the deceleration of the solute plumes which was

observed experimentally is not simulated by the models. One way to

simulate the observed spatial moment behavior is to adjust the diffusion

rate constant. Either a tenfold increase in the maximum median grain

size (from b - 0.35 mm to b - 3.5 mm, while holding De' constant) or

a one-hundredfold decrease in the effective intraparticle diffusion

coefficient (while holding b - 0.35 -m constant) will lead to a one-

hundredfold decrease in the minimum rate constant. Figures 5.8 through

5.11 compare the simulations of the first-order rate model using

this decreased rate constant with the experimental observations. As the
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order rate model equivalent to a spherical diffusion model.
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figures show, the salient characteristics of the data are simulated by

the model. The mass in mobile solution moment simulations demonstrate

good fits to the data, except in the case of bromoform. The model,

which predicts no mass loss of bromide over the course of the experi-

ment, is consistent with the data. The mass loss of carbon tetrachlo-

ride and tetrachloroethylene is simulated by the model. The observed

mass loss of bromoform, however, is significantly greater than model

predictions. This discrepancy may be due to the biotransformation of

bromoform, a possibility which was discussed by Roberts et al. (1986).

The observed deceleration of the organic plumes, and the constant veloc-

ity of the bromide plume are qualitatively simulated.

The only parameter which was adjusted to fit the model to the data

in Figures 5.8 through 5.11 was the rate constant describing solute

transfer into the regions of immobile water. The fitted value of this

rate constant is lOOx less than was calculated using literature correla-

tions and the maximum median grain size. However, this hundredfold dis-

crepancy is not entirely unrealistic. Hutzler et al. (1986), using a

similar spherical diffusion model to simulate soil column breakthrough

responses, found that grain sizes on the order of 7-20x greater than the

mean particle grain size were required to get a good fit of the model

simulations to the experimental data. This increase in grain size is

equivalent to a 49- to 400-fold decrease in the rate constants calcu-

lated using literature correlations. An alternate explanation is that

strongly hindered diffusion is occurring. Such hindered diffusion has

been reported in the literature. Roberts (1966) estimated that hexane

diffusivity in zeolite crystals was seven orders of magnitude less than

bulk diffusivity. Satterfield et al. (1973) found that, for solute

molecular diameters on the same order as sorbent pore diameters, liquid-

phase diffusivities of hydrocarbons were less than bulk diffusivity val-

ues by several orders of magnitude. Prasher and Ma (1977) cited other

studies where the reported diffusivity values for organic solutes in zeo-

lites were several orders of magnitude less than bulk diffusivity values.

In addition, Ball and Roberts' (1985) finding that the attainment of

equilibrium in batch sorption studies measuring tetrachloroethylene

uptake by Borden aquifer material required at least several months also

supports the hypothesis of strongly hindered diffusion within Borden

aquifer material.
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Layered Diffusion Model

Based on Sudicky's (1986) finding of low permeability horizontal

lenses within the Borden aquifer, it is also reasonable to suppose that

solute diffusion into these layers may influence transport. Table 5.4

lists parameter values for use in a layered diffusion model. The ratio

of mobile to total water content (f) was obtained from a semi-independent

measurement. Freyberg (1986) showed that the velocity of the conserva-

tive tracers averaged 0.091 m/d. The value of vo calculated based on

hydraulic conductivity and hydraulic gradient estimates, and assuming a

porosity of 0.33, was 0.079 m/d (Mackay et al., 1986). If it is assumed

that the difference between the two velocity estimates is caused by

zones of immobile water which do not contribute to transport, the value

of * can be calculated as follows:

0.079 m/d ' 0.86
0.091 mld

TABLE 5.4

PARAMETER VALUES FOR USE IN A LAYERED DIFFUSION MODEL

Bulk soil density (p) 1.81 g/cm3

Total porosity (0) 0.33
Ratio of mobile to total water content (*) 0.86
Pore water velocity (vo) 0.079 m/d
Fraction of "mobile" sorption sites (f) 0.86

Layer half-width (b) 0.01-0.05 m

Carbon Tetra-

Bromo- Tetra- chloro-
Bromide form chloride ethylene

Distributin coeff.
(Kd), cm /g 0.0 0.17 0.17 0.48

Mass of injected
solute (Mi), g 3,870 0.38 0.37 0.36

Liquid diffusion
coeff. (Do), m2/d 1.74xi0- 4  7.17x10- 5  7.34xi0- 5  6.83xi0- 5

Effective diffus on 2.9-8.7 1.2-3. 1.2-3.7 1.1-3.4
coeff. (D), mi/d x10 5  xlO - A5 l05x10 - 5

Equivalent first-order
rate constant (a'), 1.57xi0 -  6.51xi0 "  6.63i0-4  6.1810-4

d-1 _ 1.18xO-1 - 4.86x10-2 - 4.98x1072 - 4.65x102
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Of course, it must be realized that the value of vo represents a rough

estimate, so that the value of f calculated above should be viewed as a

gross approximation. However, for this exercise, which is meant to com-

pare qualitative characteristics of model simulations with the data,

such an approximation is adequate.

In the case of the layered model, diffusion is not assumed to be

intraparticle as it was for the spherical model, but rather interparti-

cle. For interparticle diffusion, values of X of 2-6 have been reported
(Cussler, 1984). Thus, a range of D; may be calculated by dividing Do
for the various compounds by a factor of 2 to 6. The range of immobile

layer half-widths (b) was estimated based on the approximate dimensions

of the low permeability layers noted in Freyberg (1986). The fraction

of sorption sites adjacent to zones of mobile water (f) was approximated

assuming an equal distribution of sorption sites within the mobile and

immobile region volumes. Other parameter values are the same as those

used with the spherical diffusion model.

As with the spherical diffusion model, it is now possible to calcu-

late first-order rate constants (ax') equivalent to the diffusion model

rate constants which can be obtained from the Table 5.4 parameter

values. The range in the values of ai' is due to the range in the values

of Dand b, with the maximum a' calculated using the maximum value of

D' and the minimum value of b, and the minimum oil obtained using the
e

Figures 5.12 through 5.15 compare the mass in solution and first

spatial moments calculated from the data of the four mobile region sol-

ute plumes with the mass in solution and first moments simulated using

the first-order rate model equivalent to the layered diffusion model.

Also shown are simulations using the local equilibrium model. As in

Figures 5.4 through 5.7 depicting the spherical diffusion model, the

differences between the nonequilibrium and the equilibrium simulations

do not appear significant, though at least for the low rate constant

simulations, the salient aspects of the solute behavior (mass loss and

deceleration) are seen. The magnitude of the simulated behavior, how-

ever, Is considerably less than that exhibited by the actual plumes.

The insignificance of the affect of the immobile region is largely due

to the assumption of the equal distribution of sorption sites between the

mobile and immobile water regions. Due to this assumption, the effect of
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optic data and simulated using an equilibrium and a first-
order rate model equivalent to a layered diffusion model.

89

%i



0.4
o Estimated from data

0.35 + Equilibrium model

- Nonequilib model (low rate)

o A Nonequillb model (high rate)

0.25

(n 0.2 -4+ + + + ++ + ++ +

h&AA A B 0&

0.15

0.1 0

0.05
13 0

0 200 400 600 800

TIME (days)

50

a Estimated from data

40 + Equilibrium model

Nonequilib model (low rate)
E

30 A Nonequilib model (high rate)
z

0 B.
S 20

10-

.0
0 200 400 600 800

TIME (days)

Figure 5.13. Comparison of the bromoform mobile region plume: a) Mass
in solution, and b) First spatial moment, estimated from
synoptic data and simulated using an equilibrium and a
first-order rate model equivalent to a layered diffusion

model.
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Figure 5.14. Comparison of the carbon tetrachloride mobile region plume:
a) Mass in solution and b) First spatial moment, estimated
from synoptic data and simulated using an equilibrium and
a first-order rate model equivalent to a layered diffusion
model.

91



0.2-
0.19- a Estimated from data
0.18 + Equilibrium model
0.17- o
0.16- - Nonequilib model (low rote)
0.15 A Nonequllb model (high rate)
0.14 -
0.13 -

0.12-
, 0.11 -
(A 0.1 + ++++ +A

0.09

0.08 - -A

0.07-
0.06-
0.05-
0.04 -

0.03 -

0.01 -

0 200 400 600 800

TIME (days)

24-

22- 0 Estimated from data

20- + Equilibrium model

18- - Nonequilib model (low rote)

16 A Nonequllib model (high rate)E

$-- 14 *lZ 03

12-

B.
g 10-

8-

6-

4-

2 00

0-
0 200 400 600 800

TIME (days)

Figure 5.15. Comparison of the tetrachioroethylene mobile region plume:
a) Mass in solution and b) First spatial moment, estimated
from synoptic data and simulated using an equilibrium and
a first-order rate model equivalent to a layered diffusion
model.
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the immobile region on solute transport .is limited, since relatively

little solute is associated with the immobile regions. Figures 5.16

through 5.19 demonstrate the impact of decreasing the value of f, thus

implying that more sorption sites are within regions of low permeabil-

ity. The assumption that low permeability regions, perhaps made up of

silty material, have a higher sorption capacity is not unreasonable,

though at the Borden site, there is no evidence correlating low hydrau-

lic conductivity with high distribution coefficients (Durant, 1986).

As Figures 5.16 through 5.19 show (using a value of f - 0.4 and a

value of the rate constant based on average values of D' and b), the

main characteristics of the data can be simulated, again with the excep-

tion of the decrease in bromoform mass (Figure 5.17), which is attrib-

uted to transformation.

If diffusion into low permeability lenses is occurring, and if
advective transport through the lenses is faster than diffusive trans-

port into and out of the lenses, then advective transport would dominate

and the effect of diffusion into the lenses would be minor.

The concept of comparing advective and diffusive rates, introduced

in Chapter 3, may be used to determine the relative importance of advec-

tive and diffusive transport into low permeability lenses. Assume

lenses that are 0.06 m thick (b - 0.03 m), with hydraulic conductivity

two orders of magnitude less than the hydraulic conductivity of the

"mobile" regions. Therefore:

mo-4
lens "- m  9.1 x 10 m/dVlens 100

and the advective rate constant for tetrachloroethylene transport in the

lenses would be:

vlens . (9.lxlO -4 m/d) 1.21 x 10- 3 d- 1

2b Rim 2(0.03 m)(12.5)

The diffusive rate constant would be:

3D' -5 2
a e 2 3(l.71x10 m /d) . 4.56 x 10-

3 d- 1

Rim (12.5)(0.03 m) 2

using X - 4 to calculate D; from Do.
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Figure 5.16. Comparison of the bromide mobile region plume: a) Mass in
solution, and b) First spatial moment, estimated from syn-
optic data and simulated using a first-order rate model
equivalent to a layered diffusion model, with high sorp-
tion capacity within the imobile regions (f - 0.4).
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Figure 5.17. Comparison of the bromoform mobile region plume: a) Mass
in solution, and b) First spatial moment, estimated from
synoptic data and simulated using a first-order rate model
equivalent to a layered diffusion model, with high sorp-
tion capacity within the immobile regions (f - 0.4).
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Figure 5.18. Comparison of the carbon tetrachloride mobile region plume:
a) Mass in solution, and b) First spatial moment, estimated
from synoptic data and simulated using a first-order rate
model equivalent to a layered diffusion model, with high
sorption capacity within the immobile regions (f = 0.4).
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Figure 5.19. Comparison of the tetrachloroethylene mobile region plume:
a) Mass in solution, and b) First spatial moment, estimated
from synoptic data and simulated using a first-order rate
model equivalent to a layered diffusion model, with high
sorption capacity within the immobile regions (f - 0.4).
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Comparing the two rate constants, it is seen that for the assumed

parameter values, the diffusive rate constant is nearly four times

greater than the advective rate constant. This indicates that for rea-

sonable assumptions regarding lens characteristics (b > 0.03 m; lens

hydraulic conductivity 0.01 mobile region hydraulic conductivity), the

effect of diffusive transport would dominate the effect of advective

transport within the lenses. As the ratio of advective to diffusive

rate constants is independent of Rim, the dominance of diffusive trans-

port applies for all the compounds, since of all the solutes, tetra-

chloroethylene has the lowest estimated value of De.

Temporal Data Simulation

Another way of demonstrating the complementarity of spatial and

temporal transport behavior is to use the model parameters obtained in

the preceding analysis of the zeroth and first spatial moments to simu-

late temporal responses. The following discussion will use parameters

obtained assuming that layered diffusion dominates transport (Table 5.4

with f - 0.40), although either the layered or spherical diffusion model

assumptions could have been used for this exercise.

Values for longitudinal and transverse dispersion coefficients and

initial plume dimensions must be determined for use as model input

parameters. These parameters may be estimated from the second spatial

moment data. Figures 5.20 through 5.27 show Uix and y, the principal

values of the spatial covariance tensor, calculated for the four solutes

at each synoptic sampling time. Figures 5.20a through 5.27a compare

simulations of the local equilibrium model with principal values of the

covariance tensor. The values of the longitudinal and transverse dis-

persion coefficients (D and D;) and the initial plume length and width

(2L and 2M) were chosen to provide simultaneously a visual best fit to

the eight data sets. The other parameter values used in the equilibrium

model (vo, Kd, p and 0) were obtained in the preceding section. Simi-

larly, Figures 5.20b through 5.27b compare the second spatial moment data

with simulations of the first-order rate model. Recall that the first-

order rate constant used in the model was calculated to be equivalent to

the layered diffusion model rate parameter. As with the local equilib-

rium model, the longitudinal and transverse dispersion coefficients in

the mobile region (Dox and Dmy) and the initial plume dimensions (2L and
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Figure 5.20. Comparison of the bromide mobile region plume principal
component of the spatial covariance tensor in the longi-
tudinal direction ) estimated from the synoptic data
and simulated by fitting the a) Equilibrium model, and
b) First-order rate model to the estimates.
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Figure 5.21. Comparison of the bromoform mobile region plume principal
component of the spatial covariance tensor in the longi-
tudinal direction (c~x) estimated from the synoptic data
and simulated by fitting the a) Equilibrium model, and
b) First-order rate model to the estimates.
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Figure 5.22. Comparison of the carbon tetrachloride mobile region plume
principal component of the spatial covariance tensor in the
longitudinal direction (a2 ) estimated from the synoptic

data and simulated by fitting the a) Equilibrium model,
and b) First-order rate model to the estimates.
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Figure 5.23. Comparison of the tetrachloroethylene mobile region plume
principal component of the spatial covariance tensor in the
longitudinal direction (xx) estimated from the synoptic
data and simulated by fitting the a) Equilibrium model,
and b) First-order rate model to the estimates.
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Figure 5.24. Comparison of the bromide mobile region plume principal
component of the satial covariance tensor in the trans-
verse direction (oil ) estimated from the synoptic data
and simulated by fflting the a) Equilibrium model, and
b) First-order rate model to the estimates.

103



10*

9 13 Estimated from data
- Equilibrium model

7-

%woo A.
4

3-

2-

1 C

0

0 200 400 S00 S0

TIME (days)

10*

9 - Estimated from date
- Frst-ordor rote model

7-

£C4 8

B.

3-

2

0

O 200 400 600 800

TIME (days)
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Figure 5.26. Comparison of the carbon tetrachloride mobile region plume
principal component of the spatial covariance tensor in the
transverse direction (o2 ) estimated from the synoptic
data and simulated by fting the a) Equilibrium model,
and b) First-order rate model to the estimates.
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Figure 5.27. Comparison of the tetrachloroethylene mobile region plume
principal component of the spatial covariance tensor in the

transverse direction (02 ) estimated from the synoptic
data and simulated by fiMting the a) Equilibrium model,
and b) First-order rate model to the estimates.
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2M) were adjusted to obtain simultaneously a visual best fit to the

eight data sets being considered. Other parameters used in the model

were obtained in the previous section (Table 5.4). A value of f - 0.4

was used to test whether parameters which have been shown to simulate

the spatial behavior can also simulate the temporal behavior. Table 5.5

lists the values for the dispersion coefficients and the initial plume

dimensions which will be used in the following analysis of the temporal

behavior.

TABLE 5.5

VALUES FOR DISPERSION COEFFICIENTS AND INITIAL PLUME
DIMENSIONS OBTAINED FROM SPATIAL SECOND MOMENT DATA

Local Equilibrium Model D - 0.04 m2/d
- 0.008 m2 /d

y
L -2.5 m
M -2.0 m

First-Order Rate Model*

D x - 0.02 m2/d
Dmy - 0.008 m2/d

L - 2.5 m
M - 2.0 m

*Equivalent to layered diffusion model.

6.

Using the parameter values in Tables 5.4 and 5.5, it is possible to

simulate both the temporal moments and the measured temporal responses

at particular sampling wells. Figures 5.28 through 5.31 compare zeroth

and first temporal moments estimated from the data with predictions of
~equilibrium and nonequilibrium models. Moment estimates were obtained

by numerically evaluating the breakthrough response data at the various

sampling wells, depicted in Appendix E, using the formulae:

m o t - Cj (tj - t J 1 )

(5-3)
n

C it i(tj - tJ_ 1)

Dl,t m
Ost

where C - the normalized concentration measured at time tj.
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Figure 5.28. Comparison of bromide temporal moments estimated from the
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models: a) Zeroth, and b) First moments.
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Model predictions were made using the equilibrium and nonequilib-

rium models to simulate breakthrough responses. The moments of these

responses were then evaluated using the same numerical technique that

had been applied to the data. In Chapter 3, Table 3.3, it was shown

that both equilibrium and nonequilibrium models have the same expression

for the zeroth temporal moment in terms of the model's parameters. Thus,

differences in the zeroth moment simulations of the two model types are

due to parameter differences, and not to model structure. Although

certain trends are evident, the zeroth moment data and simulations show

a fair amount of scatter. Both models simulate the low values of the

zeroth moment found at the sampling well located at x - 4.79 m. This

low value is observed because the sampling well is offset a considerable

distance from the center line of the plume. It is also apparent that

the zeroth moment data values for bromoform at the far-field wells are

considerably lower than the simulated values. This discrepancy may be

due to the possible biotransformation of bromoform, which was discussed

earlier in connection with the zeroth spatial moment results.

From Table 3.3 in Chapter 3, it was also found that the first tem-

poral moment calculated using the nonequilibrium models is equal to the

first temporal moment of the equilibrium model multiplied by a constant.

Again, therefore, any differences in the first temporal moment simula-

tions are due to parameter differences, rather than to differences in

model structure. Figures 5.28b through 5.31b show the first temporal

moment as a function of distance in the x direction. Reasonably good

agreement is found between simulated moments and moments calculated from

the data.

Judging from the zeroth and first temporal moment simulations,

there is little evidence for saying one model or the other is better at

describing the data, largely because both type models can be considered

"pseudo-equilibrium models" with respect to temporal moments. That is,

since the zeroth and first temporal moments calculated using the non-

equilibrium models are independent of the rate parameter, the zeroth and

first moments can be reproduced by an equivalent equilibrium model.

Figures 5.28 through 5.31 do indicate, ho!'ever, that the parameter val-

ues obtained from fitting the spatial moment data can be used to predict

the temporal moment data fairly well, for both equilibrium and nonequi-

librium models.
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Another vay of examining the temporal data is to inspect the break-

through responses themselves, at various veils. Using one-dimensional

models, Goltz and Roberts (1986) shoved that the sharp breakthrough and

tailing exhibited by the near-field veil breakthrough response data vas

better simulated using nonequilibrium than equilibrium models. Figures

5.32 through 5.39 compare simulations of three-dimensional equilibrium

and first-order rate models vith the data. For each solute. two veils

vere chosen for comparison, one near-field veil and one far-field veil.

Figure 5.37, which compares simulations of the equilibrium and first-

order rate models with the near-field weil response data for bromoform,

also includes a layered diffusion model simulation. The similarity of

the first-order rate and layered diffusion model simulations provides

further evidence justifying the use of the first-order rate model to

approximate the more complex diffusion models.

As the temporal moments have already been discussed, the following
analysis will concentrate on the general characteristics and form of the
breakthrough responses. The breakthrough responses simulated for the

four solutes at the far-field veils are fairly symmetric, with the non-

equilibrium model response exhibiting a bit more asymmetry than that of

the equilibrium model. It is interesting to note that for the bromide

simulated responses, the equilibrium model curve exhibits more spreading

and a lover peak value than that of the nonequilibrium model, whereas

for the organic simulations, the situation is reversed. The reason for

this behavior may be found by applying Eq. 3-66 to the nonequilibrium

model parameter values for the different solutes. Applying Eq. 3-66,

which calculates an equivalent dispersion coefficient (Deff), reveals

Deff for the bromide at the sampling veil to be less than Deff for the

organics. The value of Def f which is calculated using Eq. 3-66 is an

equilibrium model equivalent parameter which combines the effect of

dispersion in the mobile region with the effect of so-called "holdup

dispersion" (Koch and Brady, 1986). (Holdup dispersion describes a

spreading mechanism caused by solute diffusion into immobile regions.)

Owing to the sorption of the organic solutes within the immobile region,

the impact of holdup dispersion on the organic compounds' behavior is

more pronounced than the impact on the conservative tracer's behavior,

so the organic simulations exhibit relatively more spreading at the far-

field sampling points.
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Figure 5.32. Breakthrough response data and model predictions for
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Figure 5.34. Breakthrough response data and model predictions for
carbon tetrachloride at a far-field well (x 21.0 m,
y - 9.0 m, z - -4.17 m).
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Figure 5.36. Breakthrough response data and model predictions for

bromide at a near-field well (x - 2.5 m, y - 1.25 m,

z - -3.62 m).
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Figure 5.37. Breakthrough response data and model predictions for
bromoform at a near-field well (x = 2.5 m, y - 1.25 m,
z = -3.62 m).
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Examination of the near-field responses seems to confirm Goltz and

Roberts' (1986) conclusion that the characteristically sharp break-

through and tailing of the breakthrough response data are better simu-

lated with the nonequilibrium models. On the other hand, in the far

field neither model type offers a significant advantage over the other

for simulating the data. This is to be expected, since at long dis-

tances, the nonequilibrium models can be approximated by equivalent

equilibrium models.

Overall, considering the fact that input parameters were not fitted

to the temporal data, both type models quite adequately simulate the

observed data. However, especially in the case of tetrachloroethylene,

the solute expected to be most impacted by nonequilibrium effects due to

its high distribution coefficient, the salient characteristics of the

near-field data seem to be better captured by the nonequilibrium model

simulations. Also Figure 5.37 shows little difference between first-

order rate and diffusion model breakthrough simulations, certainly not

enough difference to choose one model over the bther based solely on the

goodness of fit.

ALTERNATE HYPOTHESES

Although the hypothesis of physical nonequilibrium appears to

explain the observed temporal and spatial behavior of the sorbing and

nonsorbing solutes, there are other hypotheses which also may adequately

explain the observations. This section examines some of these alterna-

tive hypotheses, in light of what is known about the Borden situation.

Nonlinear Sorption

If solute transport is assumed to be governed by the advective/dis-

persive equation, with sorption described by a Freundlich isotherm (van

Genuchten and Cleary, 1982), the following equations, written for one-

dimensional transport, apply:

2
3C a2C aC g SD- x ~ 0 ax e at (5-4a)

at

S - KCn  (5-b)
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For n < 1, sharp breakthrough and tailing are characteristic of the

breakthrough responses, making them similar to those seen at Borden (van

Genuchten and Cleary, 1982). These breakthrough response characteristics

are due to the fact that at high aqueous concentrations, the sorption

partition coefficient is smaller than at low concentrations, so that the

main body of the solute pulse overtakes the leading edge. On the other

hand, the low concentrations in the trailing edge of the pulse are sorbed

more strongly than the main body of the pulse, creating a long tail.

Qualitatively, at least, this explanation accounts for the relative

symmetry of the nonsorbing bromide tracer breakthrough responses, as

well as the sharp breakthrough and tailing of the organic solutes'

breakthrough responses. It may also explain the loss in mass and the

deceleration of the organic solutes; as the solute plume disperses over

time, the aqueous concentrations decline, and the overall sorption

increases. To examine these qualitative statements in more detail, a

numerical analysis was performed.

A Crank-Nicolson finite difference representation of Eq. 5-4 was

developed. Parameters for the model were obtained from Curtis et al.

(1986). By performing batch equilibrium sorption studies using the

Borden aquifer material, Curtis et al. (1986) found that at the low con-

centrations seen in the Borden experiment, the sorption of the organic

compounds could be modeled by a linear isotherm. However, Curtis et al.

(1986) fit their isotherm data with a Freundlich model as well. They

found that of all the solutes, tetrachloroethylene had a Freundlich

exponent most different from unity. Using the following parameter

values obtained from Curtis et alt.'s (1986) sorption experiments:

K - 0.93 (cm
3/g)0 79

n -0.79

combined with the following hydrogeologic parameter values (Tables 5.3-

5.5):

p - 1.81 g/cm
3

e - 0.33

v o a 0.079 m/d

-D - 0.04 m2/d
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simulations were run to determine the zeroth and first spatial moments

of the solute plume distribution versus sampling time. Figure 5.40

compares simulations with moments estimated from the tetrachloroethylene

data. The decline in mass and deceleration simulated by the model is

much less than exhibited by the data. The reason that the simulated

loss in mass and deceleration is relatively insignificant is due to the

assumption of equilibrium. The initial solute plume is assumed to be

instantaneously equilibrated, with a fraction of the solute mass imme-

diately sorbed. Thus, even though more and more mass goes into the

sorbed phase with time, the ratio of sorbed to aqueous mass does not

significantly change.

Hysteretic Sorption

Investigators have found that sorption may be hysteretic (Hornsby

and Davidson, 1973; Swanson and Dutt, 1973; van Genuchten et al. 1974;

Horzempa and DiToro, 1983; DiToro, 1985). Hysteretic sorption/desorp-

tion isotherms, combined with advective/dispersive transport, have been

shown to simulate breakthrough responses with long tails (van Cenuchten

et al., 1974; van Genuchten and Cleary, 1982).

To investigate whether sorption/desorption hysteresis is an impor-

tant mechanism at Borden, Curtis et al. (1986) performed a short-term

(6 day) sorption/desorption experiment using Borden aquifer material and

hexachloroethane. No significant sorption/desorption hysteresis was

observed.

In this work, a long-term (60 day) sorption/desorption study was

conducted using tetrachloroethylene and Borden aquifer material.

Tetrachloroethylene was chosen, as it is the most strongly sorbing of

the solutes under consideration, and would presumably exhibit the most

obvious hysteresis. A long-term study was conducted based on the possi-

bility of slow sorption due to diffusion rate limitations. Experimental

details are presented in Appendix F. Figure 5.41 plots the sorption/de-

sorption isotherm data.

The model most often used to describe hysteretic sorption/desorp-

tion isotherms, in conjunction with one-dimensional advective/dispersive

solute transport (Hornsby and Davidson, 1973; van Genuchten et al.,

1974; Wood and Davidson, 1975; and van Genuchten et al., 1977) is:
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Figure 5.40. Comparison of the tetrachioroethylene plume a) mass in
solution, and b) first spatial moment, estimated from the
data and simulated by an equilibrium transport model
assuming nonlinear sorption and using experimentally
obtained sorption parameter values.
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ac D'a 2  a _ BC as
at ~ x eToTX atax

S KadsC nads ac (55)at > 0

S desCndes c<0

where:

K nads-ndes
Kdes - Kadsmax

This model combines the advective/dispersive solute transport equa-

tion with a sorption source/sink term descibed by a Freundlich isotherm.

Depending on whether solute is sorbing or desorbing, different sets of

Freundlich isotherm parameters are used.

The tetrachloroethylene sorption/desorption data shown in Figure

5.41 were used to determine Freundlich isotherm parameters for this

model. In Figure 5.41a, linear sorption Is assumed (nads - 1.0) and

using least-squares regression, best fit values of Kads and ndes were

determined. In Figure 5.41b, both sorption and desorption are described

by nonlinear isotherms. Least-squares regression was used to determine

best fit parameter values for nads, ndes, and Kads. In both Figures

5.41a and 5.41b, a value of Coax M 13.6 ig/l was assumed. This Cmax

value corresponds to the maximum aqueous concentration measured in the

sorption half of the sorption/desorption experiments.

A Crank-Nicolson finite difference approximation of Eq. 5-5 was

developed. Assuming linear sorption and hysteretic desorption (Figure

5.41a), the following set of parameter values was used in the model:

p - 1.81 g/cm3
0 - 0.33 gKads 

- 0.69 cm3/g
0 - 0.33

S0.04 m2/d nads = 1.0
ndes a 0.04 m2/

Vo M 0.079 m/d ndes = 0.66

Assuming nonlinear sorption and hysteretic desorption (Figure 5.41b),

the above physical and hydrodynamic parameters were used with:
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Kads - 1.18 (cm3/s)
0 .76

nads m 0.76

ndes = 0.59

Figures 5.42 and 5.43 compare model simulations of the zeroth and

first spatial moments obtained using these two sets of parameter values

with moments estimated from the data. The zeroth and first moment simu-

lations obtained assuming a linear sorption isotherm with hysteretic

desorption (Figure 5.42) do not exhibit the observed characteristics of

the experimental data. The mass in solution exhibits a minimum with

respect to time, and the first moment versus time plot is nearly linear.

The zeroth and first moment simulations obtained using the non-

linear sorption isotherm with hysteretic desorption (Figure 5.43) are

qualitatively comparable to the observed data, though quantitatively,

the simulated loss in mass and deceleration are much less than observed.

The qualitative similarity, however, indicates that it may be possible

to fit such a nonlinear sorption/hysteretic desorption model to the

data. Figure 5.44 compares model simulations with moments estimated

from the data for the following Freundlich isotherm parameter values

which were selected in an attempt to fit the data:

Kads = 0.50 (cm3/g)
0 .7

nads = 0.70

nde s = 0.40

As Figure 5.44 shows, the nonlinear sorption/hysteretic desorption model

can adequately simulate the main characteristics of the observed spatial

moment data.

Chemical Noneguilibrium

Chemical nonequilibrium models that describe solute transport have

been proposed (Lindstrom and Narasimban, 1973; Nkedi-Kizza et al., 1984;

Valocchi, 1985s). One such model combines the advective/dispersive

transport equation with a first-order rate expression to describe a

chemical reaction:
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Figure 5.42. Comparison of the tetrachloroethylene plume a) mass in

solution, and b) first spatial moment, estimated from the
data and simulated by an equilibrium transport model assum-
ing linear sorption/hysteretic desorption and using exper-

imentally obtained sorpction/desorption parameter values.
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ac aC ac p asat- a" y ox a t

(5-6)

as- klC - k S
at 1 2

Interestingly, the mathematical form of this model is identical to the

physical nonequilibrium first-order rate model (Nkedi-Kizza et al.,

1984). Thus, distinguishing between the two models based on their simu-

lated responses is impossible. In Chapter 4, it was shown that an

approximate conversion of the first-order rate model to the diffusion

models is possible, and that attempting to distinguish between the two

types of models is difficult. On mathematical grounds, therefore, chem-

ical nonequilibrium is as adequate an explanation of the Borden observa-

tions as is physical nonequilibrium.

However, if we consider the sorption of the organic solutes in

terms of the widely held view of hydrophobic partitioning (Chiou et al.,

1979; Karickhoff, 1984; Gschwend and Wu, 1985), it would seem that no

chemical reaction, in the traditional sense, is occurring, and that slow

sorption is really slow diffusion to a sorption "site" rather than a

slow reaction at a sorption site.

Biotransformation

Roberts et al. (1986) noted that to reproduce the observed deceler-

ation with time, biotransformation would have to occur selectively, such

that solute concentrations at the leading edge of the plume would dimin-

ish more rapidly than solute concentrations at the trailing edge. Current

hypotheses regarding solute transformation in groundwater suggest this

pattern is unlikely, and in fact that the reverse is true: biotransfor-

nmation should be greater at the trailing edges because the native micro-

organisms capable of transforming a particular compound have had more

time to multiply or acclimate to the compound (Bouwer and McCarty,

1984). Also, the organic compounds show similar decreases in velocity,

regardless of whether the loss in mass is substantial (bromoform) or not

(carbon tetrachloride). For these reasons, biotransformation does not

seem to explain adequately the observed spatial moment behavior.
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External Mass Transfer

The physical nonequilibrium models discussed here make the assump-

tion that external mass transfer resistance is negligible. In this sec-

tion, the validity of that assumption will be assessed.

External mass transfer resistance, also called film transfer resis-

tance, is due to a boundary layer of stagnant water surrounding the

solid aquifer particles. For sorption to occur, solute molecules must

first diffuse through this boundary layer. If the time required for a

solute molecule to diffuse through this layer is comparable to the time

required for the molecule to diffuse within the sorbing particle itself

(internal diffusion), external resistance is important and should be

accounted for. External mass transfer is typically described in terms

of a first-order rate expression, with kf defined as the first-order

external mass transfer coefficient.

Crittenden et al. (1986) postulated criteria by which the relative

effects of dispersion, internal diffusion, and external mass transfer

could be assessed. According to Crittenden et al. (1986), when

vt a%(l + )2 3(l - em)kf(l + 0)2

D Ov 82x B vb 2 (57)

Dispersion Internal External Mass
Diffusion Transfer

the influence of dispersion, internal diffusion, and external mass

transfer on spreading will be equal. If one or two of the three terms

in Eq. 5-7 are significantly greater than the other terms, the mechanism

represented by the larger term or terms can be ignored.

Table 3.8a defines an effective dispersion coefficient for the

diffusion models as:

D 2
Deff= 1 +-'-+ 3 (5-8)eff 1+8 a(1 + )3

The equality represented by the first two terms in Eq. 5-7 is the same

as the equality obtained by setting the two terms on the right-hand side

of Eq. 5-8 equal to each other. That is, the contributions of disper-

sion and internal diffusion to an effective dispersion coefficient are
set equal to each other by the criteria of Eq. 5-7. Similarly, the last
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term in Eq. 5-7 represents the contribution to spreading due to external

mass transfer resistance. Since external mass transfer is described by

a first-order rate expression, a first-order rate constant a may be

defined as:

, 3(1 - e m)kf
8b (5-9)
m

Substituting this expression into Eq. 5-7 gives:

v . a(l + 8)2 .a(1 + 8)2 (5-10)
D Ov Ov

x

In Table 3.8a an effective dispersion coefficient for the first-order

rate model is defined as:

Dx  v2
Deff " 1 + + v8 (5-11)ci(l + )

Setting the two terms on the right-hand side of Eq. 5-11 equal to each

other gives the equality shown between the first and third terms in

Eq. 5-10. Thus, the spreading criteria suggested by Crittenden et al.

(1986) based on inspection of the transport equation solutions for uni-

form, one-dimensional flow are seen to be tantamount to equating the

second moments. Examination of Table 3.8b reveals that Crittenden et

al.'s (1986) criteria, derived for one-dimensional flow, are also applic-

able for three-dimensional flow along the path of advective transport.

Using Eq. 5-7 for a given set of parameter values allows the deter-

mination of the relative impact of dispersion, internal diffusion, and

external mass transfer on spreading. Using the following parameter

values for tetrachloroethylene, the compound which seems to be most

affected by physical nonequilibrium mechanisms:

- 1.81 g/cm3  D; 6.83 x 10- 7 m2/d

S-0.33 b 0.001 m

Dmx - 0.02 m2 /d 1- 0.29 m

Kd - 0.48 cm3/g = 2.71

- 0.979 f 0.0

vm M 0.091 m/d
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gives the following values for the first two terms of Eq. 5-7:

vt
D 1.32

x

aL(l + )2. 1.31

To evaluate the third term in Eq. 5-7, an estimate for kf is needed.

Wilson and Geankopolis (1966) developed the following correlation to

determine kf in terms of the Reynolds (Re) and Schmidt (Sc) numbers:

D1.09 1R~)/3

kf = (ReSc) (5-12)
f 2b emm

where:
2bVm

Re - Sc =-

0

Using the above correlation, and the value of D for tetrachloroethylene

obtained using the Wilke and Chang (1955) correlation, gives:

Sc - 1265

Re - 2.11 x 10- 3

kf - 0.115 m/d

Using this value of kf in Eq. 5-7, the third term in the equation is

found to be:

3(1 - em)kf X(l + )2
= 2 4.32 x 103

8 vb 82

From a comparison of the three terms in Eq. 5-7, it is apparent

that although the impacts on spreading due to dispersion and internal

diffusion are virtually equal, the effect due to external mass transfer

resistance is three orders of magnitude less. Thus, it seems that for

any reasonable value of kf, the effect of external mass transfer would

be negligible compared to dispersion and internal diffusion effects.

This fact is illustrated in Figure 5.45. In Figure 5.45, an orthogonal

collocation code developed by Crittenden et al. (1986), which combines

one-dimensional advective/dispersive transport with internal diffusion

into spheres and external mass transfer, is used to obtain breakthrough
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Figure 5.45. Simulations of breakthrough responses for various values
of the external film transfer coefficient.

responses using the parameter values for tetrachloroethylene. The fig-

ure demonstrates that varying kf over four orders of magnitude (i.e.,

increasing or decreasing by two orders of magnitude relative to the best

estimate of kf - 0.115 /d) has no effect on the response. Thus, it is

clear that the effect of external mass transfer resistance is negligi-

ble, for the parameter values under consideration.

Aquifer Heterogeneity

Roberts et al. (1986) postulated that a trend of increasing sorp-

tion in the direction of plume movement might lead to the observed loss

of solute mass in solution and the deceleration of the solute plumes.

Durant (1986) measured the uptake of tetrachloroethylene by Borden

aquifer material. The aquifer material was obtained from cores taken

along the path of plume movement. A linear best fit of the measured

values of tetrachloroethylene's distribution coefficient (Kd) versus

plume travel distance along the path of tetrachloroethylene plume move-

ment (i.e., cores $2-$5 of Durant, 1986) indicates an initial Kd, at the
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area of solute injection, of 0.431 cm3/g, with an increase of 0.016 cm3/g

per meter of plume travel distance. Assuming local equilibrium, these

values of Kd can be converted to corresponding values of a retardation

factor (R). Performing this conversion gives an increase in R from

about 3.4 at the area of plume injection, to about 4.5 at a point 13

meters downgradient, where the center of mass of the tetrachloroethylene

plume was located at the last synoptic sampling session. This increase

in R is significantly less than the increase in R from 3 to 6 shown in

Figure 8 of Roberts et al. (1986). The increase of 3 to 6 was estimated

based on the deceleration of the tetrachloroethylene plume over the

course of the experiment. A similarly large increase in R would be esti-

mated based on the decrease in the total mass of tetrachloroethylene in

solution during the experiment.

Thus, although a trend of increasing sorption in the direction of

plume movement may contribute to the observed loss in mass and decelera-

tion of the solute plumes, the extent of this contribution appears to be

small when compared with the magnitude of the observed effect.

CONCLUSIONS

It has been shown that concentration distribution histories ob-

served during a natural gradient experiment studying solute transport

may be interpreted using a physical nonequilibrium model which hy-

pothesizes advective/dispersive solute transport combined with solute

diffusion into regions of immobile water. Parameter values obtained

independently were shown inadequate to model spatial moment behavior.

However, qualitative aspects of the spatial data were simulated by

assuming hindered diffusion within spherical immobile regions, or a high

sorption capacity within layered regions. The validity of these assump-

tions is currently under experimental investigation. Making the assump-

tion of diffusion into layers of high sorption capacity, the model suc-

cessfully simulated temporal behavior, using parameters obtained from

spatial data only, thus providing an example of the complementarity of

spatial and temporal behavior. This complementarity was also demon-

strated by comparing results of spatial and temporal moment analyses at

comparable time/distance scales. General transport behavior inferred

from the spatial data could be inferred from the temporal data also.

133



MI I 
-W'av" u iv x r . .~* t .3.3*I~~ ~

Although a model based on the traditional assumptions of equilib-

rium advective/dispersive transport adequately describes many aspects of

the observed behavior, several phenomena, such as the decline in organic

solute mass in solution, the deceleration of the sorbing solute plumes,

and the tailing of the near-field breakthrough responses, are not

consistent with the equilibrium model.

Other models were also examined. In particular, numerical simula-

tions were performed to assess the spatial moment behavior of solute

concentration distributions predicted by models which assume nonlinear

and/or hysteretic sorption. It was discovered that nonlinear sorption

could also qualitatively explain the spatial and temporal moment behav-

ior, though at the low concentrations under consideration, there was

little experimental evidence of nonlinear sorption behavior. Neverthe-

less, nonlinear sorption does offer a possible explanation for the

observed transport behavior as well.
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CHAPTER 6

CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE WORK

The focus of this work has been the development, analysis, and

application of a three-dimensional solute transport model which incorpo-

rates the mechanism of diffusion into the traditional advection/disper-

sion transport equation. In this chapter, conclusions drawn from this

study will be presented, and recommendations made for related future

work.

The specific conclusions from this study can be summarized as fol-

lows:

1. Analytical solutions to various formulations of three-dimensional

physical nonequilibrium solute transport models were presented.

The solutions approach the well-known solution of the three-

dimensional advection/dispersion equation in the limiting case

where physical nonequilibrium is negligible.

2. Expressions for the spatial and temporal moments of concentration

distributions simulated by the three-dimensional physical nonequi-

librium models were derived, using a modified form of Aris' method

of moments. Analysis of the moments showed:

a. The zeroth spatial moment of the concentration dis-

tribution of solute in the mobile water region is a decreasing

function of sampling time. Thus, the physical nonequilibrium

models predict a loss of solute mass in the mobile region

over time.

b. Although the zeroth and first temporal moments are

independent of the rate of solute transfer into the immobile

water region, all the spatial moments are dependent on the

mass transfer rate. One implication of this is that while

the retardation factor obtained from temporal breakthrough

response data is independent of sampling location, the retar-
dation factor obtained from synoptic data is an increasing

function of sampling time.

c. In previous research, expressions for equilibrium

model parameters which give responses equivalent to physical

nonequilibrium models have been derived using temporal moment

analyses. This work shows that the long time values of the

135



rd IWFlwIMM . ~ W . n r Jr -rw- -f.r lS -E - f-Ar . ,~, c-s - -. ,~

equivalent parameters obtained using spatial moment analyses

are the same as the values obtained using temporal moments.

Thus, the expressions derived previously, based on temporal

distributions, are also applicable when considering spatial

distributions.

3. Due to the effect of one-dimensional versus three-dimensional dis-

persion, the first temporal moment obtained using a one-dimensional

model is greater than the first temporal moment obtained using a

three-dimensional model given the same velocity. This is true for

both equilibrium and nonequilibrium models.

4. At high values of Pem (Pem > 50), the effect of the boundary condi-

tions on temporal simulations of the models becomes small.
5. Based on the equality of the first and second moments, equivalent

parameters were defined for equilibrium, first-order rate, and

diffusion models. The differences between the model simulations

using these equivalent parameters are not large, and differentiat-

Ing among these models based on measured breakthrough response data

would be difficult, owing to parameter and measurement uncertainty.

Differentiating between equilibrium and nonequilibrium models may

be possible using spatial moment data, by taking advantage of

qualitative differences between the spatial moment predictions of

the two types of models.

6. Equilibrium and nonequilibrium models were applied to data obtained

in a field experiment studying solute transport in an unconfined,

sand aquifer. Although the experiment vas conducted in a rela-

tively homogeneous aquifer, and indeed, the equilibrium model

adequately simulated much of what was observed, some aspects of the

solute behavior could not be explained using the traditional equi-

librium approach. The assumption of physical nonequilibrium offers

a reasonable, simple explanation which qualitatively, and to some

extent quantitatively, explains experimental observations.

The following topics are recommended for future research:

1. Development of methods to measure Independently such parameter val-

uies as the diffusion rate constant and the ratio of mobile to total

water content is crucial both for gaining further understanding of

the diffusion mechanism and for using the models predictively.
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2. Further improvement in the numerical method used to evaluate first

and second spatial moments is needed. The method presented, though

useful, is cumbersome.

3. The analytical solutions presented in this study are obviously

limited in their application to real field situations, where condi-

tions vary both spatially and temporally. The development of a

three-dimensional numerical transport model which incorporates

physical nonequilibrium mechanisms (using the analytical solutions

presented here as developmental tools) would allow these physical

nonequilibrium models to be generally applied to field transport

situations.

4. The field experiment discussed in this study was conducted in a

relatively homogeneous, sandy aquifer, where physical nonequi-

librium effects were not expected to play an important role.

Nevertheless, in this work, considerable evidence is presented

indicating that physical nonequilibrium mechanisms may have

impacted the solute transport. Conduct of a field experiment in an

aquifer where physical nonequilibrium is expected to play a more

dominant role (e.g., an aggregated or stratified medium) may shed

more light on how this mechanism affects transport.

5. Based on the usefulness of the spatial data obtained from the

Borden field experiment, it seems likely that further field studies

will be conducted which attempt to produce corroborative data.

The analysis of other transport models with respect to three-

dimensional spatial concentration distributions (similar to the

limited one-dimensional analysis conducted in Chapter 5 for the

hysteretic and nonlinear sorption models) would assist in analyzing

spatial data obtained from the field.
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APPENDIX A

DERIVATION OF THE SOLUTION TO THE FIRST-ORDER RATE MODEL

FOR AN INSTANTANEOUS POINT SOURCE

Differential Equations

aC (x0y9zt) a 2Cm a Cm a 2Cm acm D ' A 1
-_ -+DD v s (A-i)

at x ax2  yay2  Z az 2  ax at

ac m(XyZt)

at %(Cm - C m) (A-2)

Initial/Boundary Conditions

Cm(x'y'ZO) - M36(x)6(y)6(z) (A-3a)

Cm(* .y,z,t) = Cm(x9*-,z,t) . Cm(x,y,y-ot) = 0 (A-3b)

Cim(xy,z,O) - 0 (A-3c)

Basically following the methods of Lindstrom and Narasimhan (1973),

who solved a similar set of equations, take the Laplace transform of

(A-2), and then apply (A-3c) to obtain:

4a
Sim+ C(xy,zs) (A-4)

where the Laplace transform, F(x,y,z,s), of a function, F(x,y,z,t), is

defined as:

F(x,y,z,s) f e-StF(x,y,z,t)dt (A-5)
0

Now, find the Laplace transform of (A-I), using (A-3a) and (A-4) to

obtain the following differential equation:

2- 2- 2-2a C acm ac C z 8D - + Dy _S+ Dz  m-- v m+ [ a + me 8a ]

X x y ay2 z az 2  ax s + a

- - M36(x)6(y)6(z) (A-6)
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with the boundary condition:

CM(i',yz's-) - C(x,*-,ZOO) - Cm(X,y,*.,s) 0 (A-7)

A solution to (A-6) and (A-7) may be found using Fourier transforms.

Define F(py,z,s) as the Fourier transform of F-(x,y,zs) such that:

t(p,y,z,s) F(x,y,z,s)e-iPXdx (A-8)

where p is the Fourier transform variable in the x-direction. Similarly,

define q and u as the Fourier transform variables in the y- and

z-directions, respectively. Taking the Fourier transform of (A-6) in

the x-, y-, and z-directions, yields:

H3

Im(p 'q'u 's) 2 Dp 2  2 +Du 2 +vip+N 2  (A-9)
D yq z

where

N2  s + -

To obtain 3 (x,yz,s), it is necessary to invert the Fourier transform.

In the x-direction apply the equation:

1ip

F(x,y,z,s) -2"- f t(p,y,zs) e'Pxdp (A-10)

Analogous equations will be used to invert the Fourier transformed solu-

tion in the y- and z-directions.

Simplifying (A-9) to read:

m(p,qu, A 2 (A-11)
p + ep + a

where

vi
D

Vx
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and

A M3
Dx

and using the definite integrals (Gradshteyn and Ryzhik, 1980):

Ai2 _. e 2e 12] Cos e
ro A 2Cos px dp 2 . x[ x~~a 2 2- (A-12a)

p + ep +a (a 2 -e )1/2

2 A Sin P dp 2 (A-l2b)
-w p -+-ep -- a (a 2 -e) 1/2

for x > 0, it is found that the Fourier inverse of (A-9) in the x-direction

is:

-xq~~, M 3exp(vx/2D X- Clxi) (A-13)
M(~~~~ 2cD

x

where

c + a2)1/2

To obtain the inverse Fourier transform of (A-13) in the y-direction,

S simplify (A-13) to read:

D 2 21/

(q+h
where

D M 3 exp(vx/2D )
2(D xD Y)1/

xy

and
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h2  v2  N2  DZu2

h 4DD + D- + D
xY y y

Applying the y-direction analog of Eq. A-10 and using the definite inte-

gral (Gradshteyn and Ryzhik, 1980):

-exp[- B(q2 + h2 )1 /2] 2 2 112

f (q2 +h 2)1 2  Cos qy dq - Ko[h(y + B) ] (A-15)

gives

m(x,y,us) DKo-h(y2 + x2 DyW/2

To obtain the inverse Fourier transform of (A-16) in the z-direction,

once again follow the same basic method. Simplify (A-16) to read

m(x,y,u,s) -2.D Ko[E(D )1 /2(r2 + k2)1/2, (A-17)

where

2 N2 2
k2 + E + LNE

4D DZ D~ Dx z z x y

Apply the z-direction analog of (A-10), using the definite integral

(Gradshteyn and Ryzhik, 1980)

Ko[E(D) (r + k2 ) / 2 ] Cos rz dr

2 7r 2 112 exp[- k(E 2Dz + z 2 1/2 (A-18)2(E2Dz + z

to find

F ep[Nv 2  N2 )1/2]
e(xy,s) p G - - + (A-19)

m x

where

H3 e.p(vx/2Dx)
F- 47(DxDyDz) 1 / 2
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2 2 2
G - + z 3_+ 1/ 2

x y z

The inverse Laplace transform of (A-19) can be obtained using the

methods of Lindstrom and Narasimhan (1973). The final result is

t
C M(xy,z,t) - exp(-aBt)G(x,yz,t) + a f H(t,T)G(x,y,z,T)dT (A-20)mo

where

1/2

H(t,r) - exp(-c%(t--r) - 1B/2O
(B(t-r)T)

1/ 2

and

S exp[- (x-vt)2 y2 _ Z2
3 4D t 0 t 0 t

G(xy2z,) - 1/2
8(,rt) (Dx D yD 1/2
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APPENDIX B

DERIVATION OF THE SOLUTION TO THE DIFFUSION MODEL

WITH SPHERICAL IMMOBILE ZONES

Differential Equations

3C m(xYZt) a2C a2C a2Cm 3C aCim-WD T- D m -D- - a (B-1)

at = x 2 y ay2  z az-2- x at

_ Ca _ - a (r a) (B-2)
t 2 ar ar

fb

C 3(xyzt) 3 f r2C (r,x,y,zt)dr (B-3)
im 0 a

Initial/Boundary Conditions

Cm(X,y,z,O) M3 6(x)6(y)6(z) (B-4a)

Cm(*0oy~z,=t) C(x*zt) C(xy, t) 0 (B-4b)

Ca(r,x,yzO) n Cim(X,y.zO) - 0 (B-4c)

Ca(Ox,ytztt) * (B-4d)

Ca(bx,ylz,t) n Cm(xyzt) (B-4e)

Following the methods of van Genuchten et al., (1984), take the

Laplace transform of (B-2), applying initial condition (B-4c) to obtain

the following ordinary differential equation:

d2Ca(rxyzs) 2 dCa 6 -(
a+ i--r - - o (B-5)

dr2  rdr De  a

Transforming boundary conditions (B-4d) and (B-4e) gives

z-(O,x*y~z,s) (B-6a)
a

a (bxyz,-) = (x,y,z,s) (B-6b)
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Solve the above ordinary differential equation with boundary conditions

to find

CM(x, y,zts)
Ca(r,x,y,z,s) - 10 (b) io(0r) (B-7)

where

WI

Now take the Laplace transform of (B-3)

3 fb r2 a(rxy,zs)dr (B-8)

and substitute (B-7) into (B-8) to obtain

3C(xY , yz,s)i1 (wb)

:imxyzs) - wbi0 (wb) (B-9)

Take the Laplace transform of (B-i), using (B-9) and initial conditions

(B-4a) and (B-4c) to get the following differential equation

2.- 2- 2- a 3iba C-  a C "  a2Cm acm  38Si 1 (wb)

D D 2 D ax [) ] Tx ax2  Y ay zaz2

M - M36(x)6(y)6(z) (B-10)

Transforming boundary condition (B-4b) gives

(*-,y,,s) - C(x,~,~azs) - W(x,y,*.,s) - 0 (B-11)

A solution to (B-10) and (B-i) may be found using Fourier transforms.

As in Appendix A, the Fourier transformed solution is

H3

2(p,q,u,s) D 2 3 2 2 (B-12)
Dp2 + Dq + Du + vip +Nx + y z

where

2 39i1(wb)N + S

wbo(wb)+
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Note the similarity between Eq. B-12 and Eq. A-9. To obtain Cm(Xyz,s),

the methods of inverting the Fourier transform in the x-, y-, and z-

directions used in Appendix A are directly applicable. The result is

F

Cm(x,y,z,s) exp [-GO(s)] (B-13)

where

M3 exp(vx/2Dx)F = 3112

41r(DxDyDz)

2 2 ) /2
G(x + L- + L-1/

x y z

2
2 2 1/2

Q(s) 4 + N2)
x

To obtain the inverse Laplace transform of (B-13), the methods used by

Rasmuson and Neretnieks (1980), and van Genuchten et al. (1984) may be

followed directly. The final result, for the response to an instantane-

ous point source, is

Cm(x,y,z,t) ,

M3D e exp(vx/2Dx 2D e2t

b2 2(D DDz)1/2Gf 0 exp(-GZp Cos b2  - GZm) d' (B-14)

where

2 2 2

x y z

___1_ 12_ f 1 1 /,2  r SI2 +12)1/2
pz - 2 p 1 2

3DB 2D A2  3D8

R1 4D -~)  b 2 1 2 _+2 - 2

X =  (Sinh 2A + Sin 2X) - 1 -2 (Sinh 2X - Sin 2X)
1 Cosh 2X - Cos 2A '2 Cosh 2X - Cos 2X
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APPENDIX C

DERIVATION OF ABSOLUTE SPATIAL MOMENTS

FOR THREE SOLUTE TRANSPORT MODELS

Local Equilibrium Model

ac .D a2 C+D a2 C+D a2 C vac(C1
at x~ __T Dy~+DA- -- I (C-i)

ax ay az

C(x,yz,O) - M3 6(x)6(y)6(z) (C-2)

C(*oo,y,z,t) - C(x,*-,z~t) - C(xpyp*,Ot) - 0 (C-3)

Taking the Fourier transform of the equation and initial condition,

where p, q, u are the Fourier transform variables in the x-, y-,

z-directions, respectively, yields:

at(p,q,u,t) -D 1i2 P2 e( pq,u,t) + D 1i2q 2t(p,q,u,t)
at xy

+ Dzi2u2C(p~q~u~t) - vip8(p,q,ut) (C-4a)

a(p~q,u,O) -M 3  
(C-4b)

Solving for Z(p,qu,t) is straightforward:

C(p,q,u,t) - M3 e ~ -( 2DIq+Z u+i (C-5)

Applying the expression

2 lim -- -. dtpgut)}(C-6)
Jkl p+0 dpi dq k du I

q+O
u+O

requires the differentiation of 8 (p,q,u,t) with respect to p, q, and u.

This operation is easily done. Taking the limit as the transform vari-

ables approach 0, gives:
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moo0 - M3

mo 0 = M3 Vt

m200 - M3 [2Dxt + v
2t2]

-oO = om " 0 (C-7)

mll0 a 12101 = Moil M 0

M020 - M3 [2Dyt]

m0 0 2 - M3 [2Dzt]

First-Order Rate Model

ac c2C aC aCm aCim
D -m+D -+ D -- v--B)

at x 2  yB 2  z 2 ax at

aCim

- a(C - Cim) (C-9)

Cm(x,y,z,O) = M36(x)S(y)6(z) (C-10a)

Cim(x,y,z,O) = 0 (C-lOb)

Cm(*in,y,z,t) CM(x,'*o,z,t) Cm(x*y,*-,t) = 0 (C-lOc)

Following Appendix A, these equations may be solved in the Laplace and

Fourier domains, to obtain

M3C3 (p,qu,s) 2 (C-11)

Dxp2 + Dyq2 + Dzu 2 + vip + s + a$

(see Eq. A-9, Appendix A).

The inverse Laplace transform of this equation needs to be derived.

Simplify, by defining
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A - DXp 2 + D yq2 + D U2 + vip - i+ ci8

so

A M 3
Cmp~~js I2 (C-12)

Multiply the numerator and denominator of the right-hand side of Eq.

4 C-12 byea + ai, to obtain

H 3(s + az)
Cm(p,q~u,s) -2 2 (C-13)

(s + 0) + A(s + a) -ca

Defining E and F as the roots of the quadratic equation in the denomina-

tor of the right-hand side of Eq. C-13 gives:

H 3(s + ai)
Cm~ptqtupsJ [(s + ai) - EJ[(s + ai) - F]

Use the following properties of Laplace transforms

L [Fs+ ai)] -et f(t)

and

FFt EEt

* (s - E)(s - F)~ F -E

to find

FFt EEt
*Cm(pgqpupt) m ~ e [ - E C (C-14)

where E and F are functions of A, ai, and ~

* Differentiation of Eq. C-14 is straightforward, though tedious.

* Apply Eq. C-6, to find:
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1 + 8 ct18

Mlo M3vt 2 [l + 82 e-at(l+8)] + 2M 3 vs [ -eit(1+S)j
(+ 8) C(1 + 8)~ 1-e

M20' 2m 3D xt [l+ 02 -ct(l+0) + [1 eDt(+8

(+ B) [i 2c(1 + B) f-

+v 2t2 M3 + 3ea(61 6v 2 (B - 1)m 1 -e43'+
G + 0)~ +~~8 ]+ 218)5 t~~~+)

+ I.6v2 t I4 3 ( 1Ot~l8 ) (C-15)

Moo- 3001 -0

M0120i (1+8)t2 2 e -at(l+S) ~+ 4M 3D y8 (
G +0) (1 + B) [-

(1 3 8) [t + 82 e £t(l+)i + 4M 3D Z i 8 ~tlS
+ 0) (1 + )

Diffusion Models

ac m 2CM V~ aDc IC aci
- D -+D _ ---- 0 r (C-16)at x 2 y 2 ax2atax a~y a

ac a D e ac a
at rv arrVDr(C17

Ci ;+ f vC. dr (C- 18)

C,(x,y,z,0) - M36(x)6(Y)tS(z) (C- 19a)

Ca(rgxgygz,O) m C13(xy,z,O) - 0 (C-19b)
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C.(*-,yIZt) = C(x,*-,z6t) - Cz(x,y,*-,t) - 0 (C-19c)

C(0,x,y,z,t) -(C-19d)

Ca(bxy,z,t) = C,(xy,z,t) (C-19e)

Following Appendix B, these equations may be solved in the Laplace

and Fourier domains, to obtain

H3
C,(pq,u~s) - -(-0

Dxp2 +Dyq2 + D +vp+ 2  (C2)

where

142 -3S8i(b
N b i1(wb) + s for the spherical diffusion model

2 b 1 2 (wb)

= b Il(wb) + s for the cylindrical diffusion modelwb 1 0(wb)

N2 . Ss Sinh wb + s for the layered diffusion model
wb Cosh Lb

To derive the inverse Laplace transform of Eq. C-20, it is neces-

sary to apply Bromwich's complex inversion formula:

A1 f a+i-D e t

C3(p,q,u,t) - 1 U i e 8m ds

Using the same technique as Rosen (1954), Rasmuson and Neretnieks (1980),

and van Genuchten et al. (1984), who derived similar inversions, it can

be shown that

C3(p,q,u,t) 1 lim f + f + st ds (C-21)
2wi i3*
c 0 -iu ic -ic -- s(-1

where A(s) - Dxp2 + D yq2 + DzU2 + vip + N2 .

Perform the above integration, basically following the methods of

Rasmuson and Neretnieks (1980) and van Genuchten et al. (1984), to find:

150

I[ .e e. : . ; .-.---------- S.* .. I . - - - -



Cm(pqut) -

2D A 2 t 2D A 2t-

13  P3 Cos b2 + 02 Sin 2
bm0 0 5b

2  + 2
b+ 27 e  D1 + a2

where

3DeB
n, - Dxp 2 + D

q 2 + DU2 + 7 3De

2D A 2  3D 02e •

n2 = vp + + 2  '2

and *1 and *2 are as defined in Chapter 2 for the different immobile

region geometries. As p, q, and u approach zero, S1 and S2 are as

defined in Appendix B (with v - 0).

Use Eq. C-6, to write

M000 limr Cm(p,q,u,t) yo +rn
p+O £0 21
q+0
u+0

F 2D A2t 2D X2I e ________________

4M3De  - 1 Cos eb2 + n 2 Sin e2

+ "b b 2  2 b dX (C-22)eL1
Differentiating Eq. C-22 by applying Liebnitz' rule, and then applying

Eq. C-6, leads to the following expressions:

urn M{3v 3vt M3vB

E*0 E(1+8)2  2(1+0)2  a(1+8)3

S2D A 2t 2D X2t

4M 3 vD e fa X 1 2 )Cos 2 + 2fl1  Sin 2
De- b1 b2
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77 r-- -v r W ra 773 T 77--- 7-7'WT -7 12i-

F 2M3Dx  M3Dxt 2M3Dx8

m200 = lim 2 + 2M 3 

C+0 we(1+o) (1+8) a(1+6) 3

2D A2t 2D t"
(2 2 e + 2 Sin e

8Mxe 3 D D 1 2 b 2  b 2

+ -2 f A -2 +
Wb 1 +n2

2 22 22L
2M3vt M3vt2 6M3 ~v2  6M3 v28
++ + +2+ 3 2 3 2 M5 4a v 2

ircl+8) 2(1+0) a (1+0) wrea(1+8)

3M3v2 t 3M3v2

a(1+0)
4  c(l+6)

4

8(nv 2 D - 3 X n )Cos 2De A2 t _- 3 2  ) Sin 2De)
3A 12 1

3 e b2

+ 2 f L 2 2 2f )Sn b2 d
wb b (-1 + Re L

where for spherical diffusion:
15D 315D 2

e ea =- T-- 9 c -- 7 -4
b 2bB8

for cylindrical diffusion:

8D 48D 2
e e

b2 , c = 7
b b 0

for layered diffusion:

3D 15D 2

e e
a - b c - bb 2b48

010 = Moo = 0

silo m 101 Mo11 - 0
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U, 00 " 2M3Dy 3Dyt 2H3Dy83
"020 "M2+ 2+ 3

C+O WC(1+B) (1+0) a(1+8)

t2D Aj 2 2 t2 fl) 2D:A 2 t j
8MDD 2 +_2n+ 2n Sin e

+ - w b 2 f d A

2M3 Dz  M3Dzt + 2M3Dza
m2 2  

2l m + 3 +
CO LC(I+8 ) 2  (1+0) 2  a(l+s) 3

-(22D A2 2D A2

8M3DzD 1 2  + 2 1 2  Sin b2

irb2  2 + 22 jJ
eJ2 L

g,,
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APPENDIX D

DERIVATION OF ABSOLUTE SPATIAL MOMENTS OF THE

IMMOBILE REGION SOLUTE DISTRIBUTION

First-Order Rate Model

In Appendix A it was found

'dx~yz~ = a C(X,y,z,s) (D1

m1 a + aDm''

Take the Fourier transform of (D-1):

s+a
Cim(Psq'u's) s+-- Cm(p,q,u,s)  (D-2)

In Appendix C it was found

M3(s + a)
_C(Pq'u's) - [(s + a) - EJ[(s + a) - F] (D-3)

Combining (D-2) and (D-3):

M3a
Cim(pq'u's) - [(s + a) - E][(s + a) - F] (D-4)

Follow Appendix C to invert the Laplace transform, to obtain

Cim(p,q,u,t) a ea [F - Et
F: E ] (D-s)

Finally, differentiate Eq. D-5 and apply Eq. 3-23 to derive the follow-

ing absolute moments:

M30[1 - e -t(l+B) ]

no00 =1 + 0
-M3vtB[l - 0 •-a t (1+ S ) ]  M3v ( - 1)[l - •-at( + 8)]

(1+8)'2 + 3 .
(l + 0)2  a(l + 1)

nolo  nool -0
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Diffusion Models

Follow Appendix B, to find

-- [N2 
-si

C m(x,y,z,s) - (x ,y,z,s) (D-6)

where

30s il(wb)
Ni(wb) + s for the spherical diffusion model

N2 s I (wb)

N2 . 2 II(b) + s for the cylindrical diffusion modelwb 1 0(wb)

N2 . ba Sinh(wb) + s for the layered diffusion model

wb Cosh(wb)

Take the Fourier transform of (D-6):

q . [N-]

Cim(p qqups) as Cm(psqu,ss  (D-7)

In Appendix B it was found

M3
H3Cm(p'qus) m Dxp2+ 2 + D u2 + vtp + N2 (D-8)

Vy z

Combining (D-7) and (D-8) yields:

M (N
2 - s)

Cim(p'q'us) - (Dxp 2  2 +DU 2  2 (D-9)
Dyq z +vip+N

Defining:

A(s) - Dxp2 + Dyq2 + Dzu 2 + vip + N2

gives:

-p2 qM3[2(s)- -Dq - D u -v v ]p - s]3impaquss =P z
as n(s) (D-10)

Follow Appendix C to obtain the inverse Laplace transform of Clm(p,q,u,s),

using Bromwich's complex inversion formula, to find:
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M3  M3 At H3 A

Cjm(pq.ut) - 3<* - 2(1+0) - _(1+8)_

40+

2D X2t 2DAt
M3A 2M3A n 2 b2 1 e2

__ +_ 3 b b~ Id
2a(1+8) WO f L + 2

r 1 22
[ 2D A2t 2D A2t

H3  4M3D e1 Cos + Sin

20(1+0) 2  + 2 S] D -
c1 2

where A - Dxp 2 + Dyq2 + DzU2 + vip

v(v + 2)D v - 3 for spherical diffusion
a =  b 2 e where v - 2 for cylindrical diffusion

v - I for layered diffusion

and n1 and Q2 are defined in Appendix C. Differentiating and applying

Eq. 3-23 leads to:

2D 2t 2DeA2t

M3 4M3D S 1 Cos 2- + a 2 Sin b2
n300-lim 2(1+0) 3 e2 f 2 + 02b d

+0 b 2 :1 2

nlO 0  F lm .M3vt + M3vB + 3 vo(8-1)n100 2(1(0+ 2 2a(l+B 3

2D A 2t 2D A2te e

2vM - 02 Cos b 2 A1 Sin b2 (D-12)

f! X~n 2 dA

D 1 22D
e 2 2 2D A2t 2D t 2t

,,3.e f ( n 2 ) Co. b + 2nIf2 Sin b 2
- -b f 2 2 2 I d+ '

no1 o - nool 0

156



APPENDIX E

BREAKTHROUGH RESPONSE DATA
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Figure E-1. Breakthrough response at well location x - 2.50 m,
y =0.00 m, and z =-3.20 m.
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Figure E.2. Breakthrough response at well location x - 2.50 m,
y - 1.25 m, and z - -3.62 m.
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Figure E.3. Breakthrough response at well location x f 5.00 m,
y - 0.00 m, and z - -3.26 m.
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Figure E.4. Tetrachloroethylene breakthrough response at well
location x - 10.00 m, y - 4.60 m, and z - -3.88 m.
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Figure E.5. Tetrachloroethylene breakthrough response at well
location x 1 10.00 m, y = 4.60 m, and,;: - -4.48 m.
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Figure E.6. Tetrachloroethylene breakthrough response at well
location x - 13.10 m, y - 4.05 m, and z - -3.42 m.
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Figure E.7. Tetrachloroethylene breakthrough response at well
location x = 13.10 m, y 4.05 m, and z - -3.72 m.
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Figure E.8. Breakthrough response at vell location x - 18.00 m,
y - 9.00 m, and z - -4.13 a.
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Figure E.9. Breakthrough response at well location x - 18.00 M,ky -9.00 m, and z -4.73 m.
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APPENDIX F

HYSTERESIS EXPERIMENT METHODOLOGY

A bottle-point partitioning technique to measure long-term sorption

(Ball and Roberts, 1985) was combined with a technique to measure long-

term desorption, in order to assess whether sorption/desorption of

tetrachloroethylene onto Borden aquifer material was hysteretic.

Sorption Experiments

Sorption experiments were conducted using the bottle-point parti-

tioning technique of Ball and Roberts (1985) to measure long-term sorp-
tion while carefully controlling losses. Using this technique, a known
mass of groundwater synthesized to approximate aquifer conditions

(Wrtis et al., 1986) and a known mass of sorbent, consisting of homoge-

nized Borden aquifer material, were added to glass ampules and the

sorbent allowed to come to complete water saturation. A known amount of

carbon-14 labeled solute was then injected into the glass ampule, and

the ampule immediately flame-sealed. After sealing, the sample was

allowed to equilibrate over a 30-day period. After the 30 days, half

the samples were centrifuged (2000 rpm for 30 min), cracked open, and

supernatant immediately transferred to scintillation cocktail for count-

ing on a Packard Tricarb Model 4530 Scintillation Counter. This count

provided an accurate measure of the solute concentration in the aqueous

phase. By difference, the sorbed-phase concentration was determined,

thus determining a point on the sorption isotherm. Losses due to parti-

tioning to the glass ampule and to the small volume of air in the ampule

were accurately and reproducibly quantified using blanks without soil.

Desorption Experiments

Desorption experiments were then conducted upon those samples not

opened in the sorption experiments. These samples were placed into

specially fabricated stainless steel vessels. To minimize losses, the

vessels were constructed to be airtight and to have only stainless steel

in contact with the sample. Synthetic groundwater, which had been pre-

equilibrated with the aquifer material, was added to the vessel, the cap

to the vessel closed, and the vessel shaken vigorously and centrifuged
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for 30 min. The shaking and centrifugation broke the glass ampule in
the steel vessel, causing the aquifer material and solute within the
ampule to be diluted by the synthetic groundwater in the vessel. The
sample was then allowed to equilibrate for 30 days. After the 30 days,

4 the steel vessel was centrifuged, opened, and the supernatant trans-
ferred to scintillation cocktail for counting. As in the sorption

experiment, aqueous-phase concentration was thus directly measured, and
the sorbed-phase concentration determined by difference. Blanks showed

4 that losses over the course of the 60-day sorption/desorption experiment

amounted to less than 15%.
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